Correlation between the in Vitro and in Vivo Blood-Brain Barrier Permeabilities of H2 Receptor Antagonists

  • Evangeline Priya Eddy
  • Roman A. Olearchyk
  • Frederick M. Ryan
  • Timothy K. Hart
  • Philip L. Smith
Part of the Advances in Behavioral Biology book series (ABBI, volume 46)

Summary

In vitro models of the Blood-Brain Barrier (BBB) offer the possibility of a first level screen on new chemical entities for predicting potential brain permeability in vivo. An in vitro BBB model was established, utilizing cultured bovine brain microvessel endothelial cells (BBMECs). BBMEC cultures were assessed morphologically and biochemically for maintainance of in vivo cerebral microvessel endothelial characteristics. Barrier function was assessed by growing cultures on polycarbonate membrane filter inserts (Costar 12mm two piece SnapwellTM transwell plates; 0.4 um pore size) and placing these inserts between diffusion chambers and measuring permeability of C14- sucrose, a paracellular marker with low permeability and H3-propranolol, a transcellular permeability marker with high permeability. Between 10–15 days in culture, sucrose permeability was the lowest and ranged between 1.6–3.0 × 10−5 cm/sec (0.058–0.12 cm/hr) while propranolol permeability was unchanged from 6–12 days in culture. The validity and usefullness of the model in predicting in vivo brain penetration was assessed by measuring the in vitro permeability of seven H2 receptor antagonists whose in vivo CNS permeability was assessed by Young et al.4 A very good correlation was obtained between the in vitro and in vivo permeability for these molecules (R2=0.898). The results suggest that the in vitro model of the BBB using BBMECs provides a useful screening system for selecting molecules which will possess appropriate characteristics to access the brain.

Keywords

Relative Permeability Diffusion Chamber Level Screen Tight Intercellular Junction Paracellular Marker 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Résumé

Les modèles cellulaires in vitro de la barrière hémato-encéphalique (BHE) permettent de prédire la pénétration cérébrale in vivo de nouvelles molécules et ainsi d’effectuer un premier criblage de ces composés thérapeutiques.Un tel modèle a été mis en place à partir de cultures de cellules endothéliales de microvaisseaux cérébraux bovins (BBMEC). Le maintien des caractéristiques de la BHE in vivo a été étudié dans ces cultures. La fonction de barrière physiologique de la BHE a été étudiée en cultivant ces BBMEC sur des membranes poreuses de polycarbonate dans des inserts de culture (Costar 12 mm, Snapwell, porosité 0.4 µm). Les membranes sont ensuite transférées dans une chambre de diffusion pour mesurer la perméabilité de la monocouche cellulaire pour le sucrose C 14, un marqueur de la perméabilité paracellulaire, et pour le propanolol 3H, un marqueur de la perméabilité transcellulaire. La perméabilité des cultures au sucrose est la plus faible après 10–15 jours de culture, entre 1.6 et 3.0×10−5 cm/s(0.058–0.12 cm/h), tandis que le passage du propanolol est stable entre 6 et 12 jours de culture. la validation de ce modèle pour prédire la pénétration cérébrale in vivo a été étudiée en déterminant la perméabilité in vitro de 7 antagonistes du récepteur H2, dont la perméabilité in vivo est connue (Young et al., J. Med. Chem.1988,31,656–671.). Une très bonne corrélation entre les valeurs de la perméabilité de ces antagonistes in vitro et in vivo a été obtenue (R2 = 0.898). Ces résultats démontrent que des cultures primaires de cellules endothéliales de microvaisseaux cérébraux bovins peuvent constituer un modèle in vitro de BHE permettant un criblage de médicaments à visée cérébrale.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. L. Audus, R. L. Bartel, I. J. Hidalgo and R.T. Borchardt. Pharm. Res. 7:(5), 435–451(1990).Google Scholar
  2. 2.
    K. L. Audus, L. Ng, W. Wang and R. T. Borchardt. In: Model Systems for Biopharmaceutical Assessment of Drug Absorption and Metabolism (R. T. Borchardt, P. L. Smith and G. Wilson, eds.) Plennum Publishers Corporation, N.Y.(in press, 1995).Google Scholar
  3. 3.
    A. Tsuji, T. Takabatake, Y. Tenda, I. Tamai, T. Yamashima, S. Moritani, T. Tsuruo and J Yamashita. Life Sci. 51: 1427–1437 (1992)CrossRefGoogle Scholar
  4. 4.
    R. C. Young, R. C. Mitchell, T. H. Brown, C. R. Ganellin, R. Griffiths, M. Jones, K. K. Rana, D. Saunders, I. R. Smith, N. E. Sore and T. J. Wilks. J.Med.Chem. 31: 656–671(1988).Google Scholar
  5. 5.
    D. W. Miller, K. L. Audus and R. T. Borchardt. J. Tiss. Cult. Meth. 14: 217–224 (1992).CrossRefGoogle Scholar
  6. 6.
    K. L. Audus and R. T. Borchardt. Pharm. Res. 3: 81–87 (1986).CrossRefGoogle Scholar
  7. 7.
    K. L. Audus and R. T. Borchardt. Ann. N. Y. Acad. Sci. 507: 9–18 (1987).CrossRefGoogle Scholar
  8. 8.
    A. R. Hilgers, R. A. Conradi and P. S. Burton. Pharm. Res. 7: 902–910 (1990).PubMedCrossRefGoogle Scholar
  9. 9.
    W. M. Pardridge, D. Triguero, J. Yang and P. A. Cancilla. J. Pharm. Exp. Ther. 253: 884–891 (1990).Google Scholar
  10. 10.
    M-P. Dehouck, P. Jolliet-Riant, F. Bree, J-C. Fruchart, R. Cecchelli and J-P. Tillement. J. Neurochem. 58: 1790–1797 (1992).PubMedCrossRefGoogle Scholar
  11. 11.
    F. Joo. J. Neurochem. 58: 1–17 (1992)PubMedCrossRefGoogle Scholar
  12. 12.
    F. Joo. Neurochem. Int. 23: 499–521 (1993).PubMedCrossRefGoogle Scholar
  13. 13.
    L. L. Rubin, et al., J. Cell Biol. 115: 1725–1736 (1991).PubMedCrossRefGoogle Scholar
  14. 14.
    M. W. Brightman and T. S. Reese. J. Cell Biol. 40: 648–677 (1969).PubMedCrossRefGoogle Scholar
  15. 15.
    C. Cordon-Cardo, J. P. O’Brien, D. Casals, et al., Proc. Natl. Acad. Sci. USA. 86: 695–698 (1989).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Evangeline Priya Eddy
    • 1
  • Roman A. Olearchyk
    • 1
  • Frederick M. Ryan
    • 1
  • Timothy K. Hart
    • 2
  • Philip L. Smith
    • 1
  1. 1.Department of Drug DeliverySmithKline Beecham Pharmaceuticals King of PrussiaUSA
  2. 2.Department of ToxicologySmithKline Beecham Pharmaceuticals King of PrussiaUSA

Personalised recommendations