“Brain-Tissue-Specific” Versus “Serum-Specific” Posttranslational Modification of Human Cerebrospinal Fluid Polypeptides with N-Linked Carbohydrates

  • Andrea Hoffmann
  • Eckart Grabenhorst
  • Manfred Nimtz
  • Harald S. Conradt
Part of the Advances in Behavioral Biology book series (ABBI, volume 46)

Summary

Comparison of the patterns of N-linked oligosaccharides attached to several proteins isolated from human cerebrospinal fluid and serum reveals striking differences (“brain-type” versus “serum-type” glycosylation) which are attributed to the different physiological surroundings of both body fluids. No modification of oligosaccharides was found to occur during passage of proteins across the blood-brain barrier. Glycosylation analysis of CSF-proteins can thus be used to gain information on the site of biosynthesis (i.e. systemic or intrathecal) of specific proteins in question.

Keywords

Oligosaccharide Chain Neuraminic Acid Arachnoidal Granulation Human Cerebrospinal Fluid Terminal Galactose 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Résumé

La comparaison de structures des oligosaccharides attachés à plusieurs protéines obtenues du fluide cérébrospinale et du sérum humains a montrée des différences frappantes (“brain-type” versus “serum-type” glycosylation) qui ont été attribuées aux alentours differents de ces deux fluides. On n’a pas rencontré une modification des oligosaccharides pendant le passage au-delà de la barrière hémato-encephalique. La recherche de la glycosylation de protéines cérébrospinales permet alors d’obtenir des informations sur le lieu de biosynthèse (dans le cerveau ou ailleurs dans le corps) des protéines particulières en question.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Thomas, T., Schreiber, G., and Jaworowski, A. (1989). Dev. Biol. 134, 38–47Google Scholar
  2. 2.
    Poduslo, J.F. and Curran, G.L. (1994). Molec. Brain Res. 23, 157–162PubMedCrossRefGoogle Scholar
  3. 3.
    Irie, S. and Tavassoli, M. (1991). Cell Biol. Rev. 25, 317–331.PubMedGoogle Scholar
  4. 4.
    Rademacher, T., Parekh, R.B., and Dwek, R.A. (1988). Ann. Rev. Biochem. 57, 785–838.Google Scholar
  5. 5.
    Hoffmann, A., Conradt, H.S., Gross, G., Nimtz, M., Lottspeich, F., and Wurster, U. (1993). J. Neurochem. 61, 451–456.PubMedCrossRefGoogle Scholar
  6. 6.
    Hoffmann, A., Nimtz, M., Getzlaff, R., and Conradt, H.S. (1995). FEBS Lett. 359, 164–168PubMedCrossRefGoogle Scholar
  7. 7.
    Hoffmann, A., Nimtz, M., Wurster, U., and Conradt, H.S. (1994). J. Neurochem. 63, 2185–2196.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Andrea Hoffmann
    • 1
  • Eckart Grabenhorst
    • 1
  • Manfred Nimtz
    • 1
  • Harald S. Conradt
    • 1
  1. 1.Department of Molecular BiologyGesellschaft für Biotechnologische ForschungBraunschweigGermany

Personalised recommendations