Role of Peroxidase-Positive Astrocytes in Estradiol-Related Hypothalamic Damage

  • Hyman M. Schipper
Part of the Altschul Symposia Series book series (ALSS, volume 2)

Abstract

Astrocytes perform a wide range of adaptive functions in the mammalian nervous system including maintenance of the blood-brain barrier and ion homeostasis, sequestration and metabolism of various neurotransmitters, antigen presentation to immunocytes and elaboration of a scaffolding for neuronal migration during embryogenesis (Fedoroff & Vernadakis, 1986A; Wilkin et al., 1990). On the other hand, astrocytes may, under certain circumstances, mediate dystrophic effects within the CNS and thereby contribute to a decline in neurologic function. Examples of the latter include formation of epileptogenic scar tissue following CNS injury, neoplastic transformation and malignant behaviour, metabolism of protoxins (such as MPTP) to potent neurotoxins (MPP+), and accumulation and release of excitotoxic amino acids during tissue hypoxia and aluminum exposure (Fedoroff & Vernadakis 1986B; Langston 1985; Tholey et al 1991; Albrecht et al., 1991). In this article, I review evidence implicating a subpopulation of astrocytes replete with redox-active iron in the pathogenesis of estrogen-related hypothalamic damage and anovulatory sterility in rodents.

Keywords

Arcuate Nucleus Estradiol Valerate Medial Basal Hypothalamus Brain Cell Culture Catechol Estrogen 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdul-Hajj, Y., and Cisek, P., 1986, Region selective reaction of thiols with catechol estrogens and estrogen-O-quinones, J. Steroid Biochem. 25: 245.CrossRefGoogle Scholar
  2. Abdul-Hajj, Y., and Cisek, P., 1988, Catechol estrogen adducts, J. Steroid Biochem. 31: 107.CrossRefGoogle Scholar
  3. Albrecht, J., Simmons, M., Dutton, G.R., and Norenberg, M.D., 1991, Aluminum chloride stimulates the release of endogenous glutamate, taurine and adenosine from cultured rat cortical astrocytes, Neurosci. Leu. 127: 105.CrossRefGoogle Scholar
  4. Anderson, W.A., Kang, Y., and DeSombre, E.R., 1975, Endogenous peroxidase: specific marker enzyme for tissues displaying growth dependency on estrogen, J. Cell Biol. 64: 668.PubMedCrossRefGoogle Scholar
  5. Ascheim, P., 1976, Aging in the hypothalamic-hypophyseal ovarian axis in the rat, In: Hypothalamus, Pituitary and Aging, Everitt, A.V., and Burgess, J.A., (eds), Charles C. Thomas, Springfield, II, pp. 376–418.Google Scholar
  6. Askarov, K.A., Tsoi, G.G., Onischchenko, V.A., Simonova, L.Y., Kavaz-Ogly, A.A., and Rish, M.A., 1984, Catalase and peroxidase activity of porphyrins, Biokhimiia 49: 754.PubMedGoogle Scholar
  7. Ball, P., and Knuppen, R., 1978, Formation of 2- and 4-hydroestrogens by brain, pituitary, and liver of the human fetus, J. Clin. Endocrinol. 47: 732.CrossRefGoogle Scholar
  8. Blake, C., Weiner, R., Gorski, R., and Sawyer, C., 1972, Secretion of pituitary luteinizing hormone and follice stimulating hormone in female rats made persistently estrous or diestrous by hypothalamic deafferentiation, Endocrinology 90: 855.PubMedCrossRefGoogle Scholar
  9. Brawer, J.R., Naftolin, F., Martin, J., and Sonnenschein, C., 1978, Effects of single injection of estradiol valerate on the hypothalamic arcuate nucleus and on reproductive function in the female rat, Endocrinology 103: 501.PubMedCrossRefGoogle Scholar
  10. Brawer, J., Schipper, H., and Naftolin, F., 1980, Ovary-dependent degeneration in the hypothalamic arcuate nucleus, Endocrinology 107: 274.PubMedCrossRefGoogle Scholar
  11. Brawer, J., Schipper, H., and Robaire, B., 1983, Effects of long term androgen and estradiol exposure on the hypothalamus, Endocrinology 112: 194.PubMedCrossRefGoogle Scholar
  12. Brawer, J.R., and Sonnenschein, C., 1975, Cytopathological effects of estradiol on the arcuate nucleus of the female rat. A possible mechanism for pituitary tumorigenesis, Am. J. Anat. 144: 57.PubMedCrossRefGoogle Scholar
  13. Creswell, G.F., Reis, D.J., and Maclean, P., 1964, Aldehyde-fuchsin positive material in brain of squirrel monkey (Saimiri sciureus), Am. J. Anat. 115: 543.PubMedCrossRefGoogle Scholar
  14. Desjardins, G.C., Beaudet, A., Schipper, H.M., and Brawer, J., 1992, Vitamin E treatment protects against estradiol-induced beta-endorphin loss. The Endocrine Society, June 1992 (Abstract).Google Scholar
  15. Desjardins, G.C., Brawer, J.R., and Beaudet, A., 1991, Selective loss of 13-endorphin neurons and compensatory increase in opioid receptors in the hypothalamus of estradiol valerate-treated rats, Soc. Neurosci., 21stAnnu. Meeting 17: 1285 (Abst).Google Scholar
  16. Diepen, R., Engelhardt, F., and Smith-Agreda, V., 1954, ber Ort und Artder Entstehung des Neurosekrets im supraoptico-hypophysren System bei Hund und katze, Verh. Anat. Ges Anat. Anz (Suppl) 101: 276.Google Scholar
  17. Fedoroff, S., and Vernadakis, A., (eds) 1986A, Astrocytes Vol 2, “Biochemistry, Physiology and Pharmacology of Astrocytes,” Academic Press Inc., Orlando.Google Scholar
  18. Fedoroff, S., and Vernadakis, A., (eds) 1986B, Astrocytes Vol 3, “Cell Biology and Pathology of Astrocytes,” Academic Press Inc., Orlando.Google Scholar
  19. Finch, C.E., Felicio, L., Mobbs, C., and Nelson, J., 1984, Ovarian and steroidal influences on neuroendocrine aging processes in female rodents, Endocrine Rev. 5: 467.CrossRefGoogle Scholar
  20. Goldgefter, L., 1976, Studies on the structure and function of Gomori-positive glial cells in the rat hypothalamus,. Acta Anat. 95: 545.PubMedCrossRefGoogle Scholar
  21. Goldgefter, L., Schejter, A.S., and Gill, D., 1980, Structural and microspectrofluorometric studies on glial cells from the periventricular and arcuate nuclei of the rat hypothalamus, Cell Tissue Res. 211: 503.PubMedCrossRefGoogle Scholar
  22. Goldfischer, S., Villaverde, H., and Forschirm, R., 1966, The demonstration of acid hydrolase, thermostable-reduced diphosphopyridine nucleotide tetrazolium reductase and peroxidase activities in human lipofuscin pigment granules, J. Histochem. Cytochem. 14: 641.PubMedCrossRefGoogle Scholar
  23. Graham, D.G., 1978, Oxidative pathways for catecholamines in the genesis of neuromelanin and cytotoxic quinones, Mol. Pharmacol. 14: 633.PubMedGoogle Scholar
  24. Graham, D., Tiffany, S., Bell, W. Jr., and Gutknecht, W., 1978, Autoxidation versus covalent binding of quinones as the mechanism of toxicity of dopamine, 6-hydroxydopamine, and related compounds towards C1300 neuroblastoma cells in vitro, Mol. Pharmacol. 14: 644.PubMedGoogle Scholar
  25. Hahn, D.W., and McGuire, J.L., 1978, The androgen-sterilized rat: induction of ovulation and implantation by luteinizing hormone-releasing hormone, Endocrinology 102: 1741.PubMedCrossRefGoogle Scholar
  26. Hill, J., and Switzer, R., 1984, The regional distribution and cellular localization of iron in the rat brain, Neuroscience 3: 595.CrossRefGoogle Scholar
  27. Horning, E.C., Thenot, J-P., and Helton, E., 1978, Toxic agents resulting from the oxidative metabolism of steroid hormones and drugs, J. Toxicol. Environ. Health 4: 341.PubMedCrossRefGoogle Scholar
  28. Jellinck, P.H., and Fletcher, R., 1970, Peroxidase-catalyzed conjugation of [4–14Cj-estradiol with albumin and thiols, Can. J. Biochem. 48: 1192.PubMedCrossRefGoogle Scholar
  29. Jellinck, P.H., Perry, M., Lovsted, J., and Newcombe, A., 1985, Metabolism of estradiol by true and pseudoperoxidases, J. Steroid Biochem. 22: 699.PubMedCrossRefGoogle Scholar
  30. Kalyanaraman, B., Felix, C.C., and Sealy, R.C., 1985, Semiquinone anion radicals of catechol(amine)s, catechol estrogens, and their metal ion complexes, Environ. Health Perspect. 64: 185.PubMedCrossRefGoogle Scholar
  31. Kalyanaraman, B., Sealy, R., and Sivarajah, K., 1984, An electron spin resonance study of osemiquinones formed during the enzymatic and autoxidation of catechol estrogens, J. Biol. Chem. 259: 14018.PubMedGoogle Scholar
  32. Keefer, D.A., and Christ, J.F., 1976, Distribution of endogenous diaminobenzidine-staining cells in the normal rat brain, Brain Res. 116: 312.PubMedCrossRefGoogle Scholar
  33. Kontos, H., Wei, W., Ellis, E., Jenkins, L., Povishock, J., Rowe, G., andHess, M., 1985, Appearance of superoxide anion radical in cerebral extracellular space during increased prostaglandin synthesis in cats, Circ Res. 57: 142.PubMedCrossRefGoogle Scholar
  34. Kumamoto, T., 1981, Histochemical study on endogenous diaminobenzidine-positive granules in the glia cell of rat brain, Acta Histochem. Cytochem. 14: 173.CrossRefGoogle Scholar
  35. Landfield, P.W., 1978, An endocrine hypothesis of brain aging and studies on brain-endocrine correlations and monosynaptic physiology during aging, In: Parkinson’s Disease II, Finch, C.E., Potter, D.E., and Kenny, A.D. (eds), Plenum Publ. Corp., N.Y. 179–199.CrossRefGoogle Scholar
  36. Landfleld, P.W., Waymire, J.C., and Lynch, G., 1978, Hippocampal aging and adrenocorticoids: quantative correlations, Science 202: 1098.CrossRefGoogle Scholar
  37. Langston, J.W., 1985, MPTP and Parkinson’s disease, Trends Neurosci. 8: 79.CrossRefGoogle Scholar
  38. Langub, M.C.Jr., and Watson, R.E.Jr., 1992, Estrogen receptor-immunoreactive glia, endothelia, and ependyma in guinea pig preoptic area and median eminence: electron microscopy, Endocrinology 130: 364.PubMedCrossRefGoogle Scholar
  39. Lee, S.H., 1982, Estrogen receptor-rich neuroglia of the rat brain, Lab. Invest. 46: 49A (Abst.).Google Scholar
  40. Löfgreen, F., 1961, The glial-vascular apparatus in the floor of the infundibular cavity, Acta. Univ. lund. 57: 1.Google Scholar
  41. Lyttle, C.R., and DeSombre, E.R., 1977, Generality of oestrogen stimulation of peroxidase activity in growth responsive tissues, Nature 268: 337.PubMedCrossRefGoogle Scholar
  42. Maclusky, N., Naftolin, F., Krey, L., and Franks, S., 1981, The catechol-estrogens, J. Steroid Biochem. 15: 111.Google Scholar
  43. Maggs, J.L., Grabowski, P.S., and Park, B.K., 1983, Drug protein conjugates III. Inhibition of the irreversible binding of ethinylestradiol to rat liver microsomal protein by mixed function oxidase inhibitors, ascorbic acid and thiols, J. Steroid Biochem. 19: 1273.PubMedCrossRefGoogle Scholar
  44. McLaren, J., Brawer, J.R., and Schipper, H.M., 1991, Cysteamine-induced astrocyte granules: ultrastructure and elemental composition. Third IBRO World Congress of Neuroscience, Montreal, August 1991.Google Scholar
  45. Metodiewa, D., Reszka, K., and Dunford, H., 1989, Evidence for a peroxidatic oxidation of norepinephrine, a catecholamine, by lactoperoxidase, Biochem. Biophys. Res. Commun. 160: 1183.PubMedCrossRefGoogle Scholar
  46. Metzler, M., and McLachlan, J.A., 1978, Peroxidase-mediated oxidation, a possible pathway for the metabolic activation of diethylstilbestrol, Biochem. Biophys. Res. Commun. 85: 874.PubMedCrossRefGoogle Scholar
  47. Mondschein, J., Hersey, R., and Weisz, J., 1986, Purification and characterization of estrogen-2/4hydroxylase activity from rabbit hypothalamus: peroxidase-mediated catechol estrogen formation, Endocrinology 119: 1105.PubMedCrossRefGoogle Scholar
  48. Nadler, R.D., 1972, Intrahypothalandc locus for induction of androgen sterilization in neonatal female rats, Neuroendocrinology 8: 349.CrossRefGoogle Scholar
  49. Naftolin, F., Garcia-Segura, L.M., Keefe, D., Leranth, C., Maclusky, N.J., and Brawer, J.R., 1990, Estrogen effects on the synaptology and neural membranes of the rat hypothalamic arcuate nucleus, Biol. Reproduction 42: 21.CrossRefGoogle Scholar
  50. Noda, H., 1959, On the Gomorophil findings other than the neurosecretory system in the observation of the hypothalamo-hypophysial system, Gunma J. Med. Sci. 8: 223.Google Scholar
  51. Olmos, G., Naftolin, F., Perez, J., Tranque, P.A., and Garcia-Segura, L.M., 1989, Synaptic remodeling in the rat arcuate nucleus during the estrous cycle, Neuroscience 32: 663.PubMedCrossRefGoogle Scholar
  52. Perez, J., Naftolin, F., and Garcia Segura, L.M., 1990, Sexual differentiation of synaptic connectivity and neuronal plasma membrane in the arcuate nucleus of the rat hypothalamus, Brain Res. 527: 116.PubMedCrossRefGoogle Scholar
  53. Peterson, T.C., Peterson, M.R., and Williams, N., 1989, The role of heure oxygenase and aryl hydrocarbon hydroxylase in the protection by cysteamine from acetaminophen hepatotoxicity, Toxicol Appl. Pharmacol. 97: 430.PubMedCrossRefGoogle Scholar
  54. Proud, V., Hsia, Y., and Wolf, B., 1989, Disorders of amino acid metabolism (Ch. 38) In: Basic Neurochemistry, 4th Ed.Google Scholar
  55. Röhlich, P., Vigh, B., Teichmann, I., and Aros, B., 1965, Electron microscopic examination of the median eminence of the rat, Acta. Biol. Hung. 15: 431.Google Scholar
  56. Rosenberg, P., 1988, Catecholamine toxicity in cerebral cortex in dissociated cell culture, J Neurosci 8: 2887.PubMedGoogle Scholar
  57. Schipper, H., 1982, Ph.D. Thesis, McGill University.Google Scholar
  58. Schipper, H.M., 1991, Gomori-positive astrocytes: biological propertiesand implications for neurologic and neuroendocrine disorders, Glia 4: 365.PubMedCrossRefGoogle Scholar
  59. Schipper, H., Brawer, J.R., Nelson, J.F., Felicio, L.S., and Finch, C.E.,1981, Role of the gonads in the histologic aging of the hypothalamic arcuate nucleus, Biol. Reprod. 25: 413.Google Scholar
  60. Schipper, H.M., Kotake, Y., and Janzen, E.G., 1991, Catechol oxidation by peroxidase-positive astrocytes in primary culture: an electron spin resonance study, J. Neurosci. 11: 2170.PubMedGoogle Scholar
  61. Schipper, H.M., Lechan, R.M., and Reichlin, S., 1990A, Glial peroxidase activity in the hypothalamic arcuate nucleus: effects of estradiol valerate-induced persistent estrus, Brain Res. 507: 200.Google Scholar
  62. Schipper, H.M., and Mateescu-Cantuniari, A., 1991, Identification of peroxidase-positive astrocytes by combined histochemical and immunolabeling techniques in situ and in cell culture, J. Histochem. Cytochem, 39: 1009.PubMedCrossRefGoogle Scholar
  63. Schipper, H.M., Piotte, M., and Brawer, J.R., 1990B, Effects of progestins on the estradiol-related accumulation of astrocytic granules in the hypothalamic arcuate nucleus, Brain Res. 527: 176.Google Scholar
  64. Schipper, H.M., Scarborough, D.E., Lechan, R.M., and Reichlin, S., 1990C, Gomori-positive astrocytes in primary culture: effects of in vitro age and cysteamine exposure, Dev. Brain Res. 54: 71.Google Scholar
  65. Singh, KB., and Greenwald, G.S., 1967, Effects of continuous light on the reproductive cycle of the female rat: induction of ovulation and pituitary gonadotrophins during persistent oestrus, J. Endocrinol. 38: 389.PubMedCrossRefGoogle Scholar
  66. Srebro, Z., 1971, Periventricular Gomori-positive glia in brains of X-irradiated rats, Brain Res. 35: 463.PubMedCrossRefGoogle Scholar
  67. Srebro, Z., and Cichocki, T., 1971, A system of periventricular glia in brain characterized by large peroxisome-like organelles, Acta. Histochem. Bd 41: 108.Google Scholar
  68. Srebro, Z., and Lach, H., 1987, The ultrastructure of the periventricular glia in the brains of rats and mice, Folio Biol. (Krakow) 35: 131.Google Scholar
  69. Srebro, Z., Lach, H., Krawczyk, S., and Dziubek, K., 1975, Observations on the presence of Gomori-positive cells in the telencephalon of various forms of green frogs, Acta. Biol. Craco. 18: 203.Google Scholar
  70. Srebro, Z., and Macinska, A., 1972, Cytochemical demonstration of ferriciron and fluorescence microscopy observations on Gomori-positive glia grown in vitro, Brain Res. 42: 53.PubMedCrossRefGoogle Scholar
  71. Srebro, Z., and Macinska, A., 1973, Gomori-positive glial cells in in vitro cultures of human fetal brain tissue, Acta. Biol. Craco. 16: 147.Google Scholar
  72. Stopa, E., Hauser, H., King, J., Blaustein, J., Greene, G., and Reichlin,S., 1989, Estrogen receptor immunoreactivity in human hypothalamus, Soc. Neurosci. 19th Annu Meeting 627 (Abst).Google Scholar
  73. Tholey, G., Copin, J.C., and Ledig, M., 1991, Hypoxia induced metabolism dysfunction of rat astrocytes in primary cell cultures, Neurochem. Res. 16: 423.PubMedCrossRefGoogle Scholar
  74. Van Steveninck, J., Boegheim, J.P., Dubbleman, T.M., and Van der Zee, J.,1987, The mechanism of potentiation of horseradish peroxidase-catalyzed oxidation of NADPH by porphyrins, Biochem. J. 242: 611.Google Scholar
  75. Wagner, H.J., and Pilgrim C., 1978, A microprobe analysis of Gomori-positive glial cells in the rat arcuate nucleus, Histochemistry 55: 147.PubMedCrossRefGoogle Scholar
  76. Wilkin, G., Marriott, D., and Cholewinski, A., 1990, Astrocyte heterogeneity, TINS 13: 43.PubMedGoogle Scholar
  77. Wislocki, G.B., and Leduc, E.H., 1954, The cytology of the subcommissural organ, Reissner’s fibre, periventricular glial cells and posterior collicular recess of the rat’s brain, J. Comp. Neurol. 101: 283.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Hyman M. Schipper
    • 1
    • 2
  1. 1.Department of NeurologyMcGill UniversityUSA
  2. 2.Lady Davis Institute for Medical ResearchSir Mortimer B. Davis — Jewish General HospitalMontrealCanada

Personalised recommendations