Biomechanical and Physiological Aspects of Arterial Vasomotion

  • N. Stergiopulos
  • J.-J. Meister

Abstract

Muscular arteries possess the ability to alter their geometry and apparent mechanical properties by changing the degree of muscular tone. Arterial muscular tone alterations may result from external stimuli (i. e., neural or humoral factors, changes in pressure or flow, etc.) though spontaneous oscillations in muscular tone, in the absence of variations in external stimuli, are also observed. These are usually manifested by low-frequency oscillations in the arterial diameter which, by analogy to small resistance arteries and arterioles, can be termed arterial vasomotion.

Keywords

Radial Artery Active Stress Muscular Artery Myogenic Response Muscular Tone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Achakri, H., Rachev, A., Stergiopulos, N., and Meister, J.-J., 1994, A Theoretical Investigation of Low Frequency Diameter Oscillations of Muscular Arteries, Ann. Biomed. Eng. 22: 253–263.PubMedCrossRefGoogle Scholar
  2. Achakri, H., Stergiopulos, N., Hoogerwerf, N., Hayoz, D., Brunner, H. R., and Meister, J.-J., 1995. Intraluminal pressure modulates the magnitude and the frequency of induced vasomotion in rat arteries, J. Vasc. Res.: 32: 237–246.PubMedCrossRefGoogle Scholar
  3. Bayliss, W. M., 1902, On the local reactions of the arterial wall to changes of internal pressure. J. Physiol. 28: 220–231.PubMedCentralPubMedGoogle Scholar
  4. Busse, R., Bauer, R. D., Burger, W., Sturm, K., and Shabert, A., 1982, Correlation between amplitude and frequency of spontaneous rhythmic contractions and the mean circumferential wall stress of a small muscular artery. In: Cardiovascular System Dynamics, T. Kenner, R. Busse, and H. Hinghofer-Szalkay, (Eds.), New York: Plenum Press, pp. 363–372.CrossRefGoogle Scholar
  5. Colantuoni, A., Bertuglia, S., and Maglietta, M., 1985, Variations of rhythmic diameter changes at the arterial microvascular bifurcations, Pfluegers Archiv 403: 289–295.PubMedCrossRefGoogle Scholar
  6. Demey, J. G., Boonen, H. C. M., and Strukyer-Boudier, H. A. J., 1988, Rhythmic contractile activity in resistance arteries of spontaneously hypertensive rats. In: Resistance arteries, W. Halpern, B. Pegram, J. Brayden, K. Mackey, M. McLaughlin, and G. Osol, (Eds.), NY: Perinatology, pp. 336–341.Google Scholar
  7. Edman, K. A. P., 1988, Double-hyperbolic force-velocity relation in frog muscle fibres, J. Physiol. 404:301–321.PubMedCentralPubMedGoogle Scholar
  8. Falcone, J. C., Davis, M. J., and Meininger, G. A., 1991, Endothelial independence of myogenic response in isolated skeletal muscle arterioles, Am. J. Physiol. 260: H130–H135.PubMedGoogle Scholar
  9. Folkow, B., 1964, Description of the myogenic hypothesis, Circ. Res. 15: 279–287.PubMedGoogle Scholar
  10. Funk, W., and Maglietta, M., 1983, Spontaneous arteriolar vasomotion, Prog. Appl. Microcirc. 3: 66–82.Google Scholar
  11. Gonzalez-Fernandez, J. M., and Ermentrout, B., 1994, On the origin of the vasomotion of small arteries, Math. Biosci. 119: 127–167.PubMedCrossRefGoogle Scholar
  12. Griffith, T. M., and Edwards, D. H., 1990, Myogenic autoregulation of flow may be inversely related to endothelium-derived relaxing factor activity, Am. J. Physiol. 258: H1171–H1180.PubMedGoogle Scholar
  13. Griffith, T. M., Hutcheson, I., Randall, M., and Edwards, D. H., 1991, Role of flow in endothelial-mediated responses. In: Resistance Arteries, Structure and Function, M. J. Mulvany, C. Aalkjaer, A. M. Heagerty, and N. C. B. Nyborg, (Eds.), Amsterdam: Elsevier, pp. 204–207.Google Scholar
  14. Griffith, T. M., and Edwards, D. H., 1993, Modulation of chaotic pressure oscillations in isolated resistance arteries by EDRF, Eur. Heart J. 4 (1): 60–67.Google Scholar
  15. Griffith, T. M., 1994, Chaos and fractals in vascular biology, Vasc. Med. Rev. 5: 161–182.Google Scholar
  16. Griffith, T. M., and Edwards, D. H., 1994a, EDRF suppresses chaotic pressure oscillations in an isolated resistance artery without influencing their intrinsic complexity, Am. J. Physiol. 266: H1786–H1800.PubMedGoogle Scholar
  17. Griffith, T. M., and Edwards, D. H., 1994b, Fractal analysis of the role of smooth muscle Ca2+ fluxes in the genesis of chaotic arterial pressure oscillations, Am. J. Physiol. 266: H1801–H 1811.PubMedGoogle Scholar
  18. Harder, D. R., 1984, Pressure-dependent membrane depolarization in cat middle cerebral artery, Circ. Res. 55:197–202.PubMedCrossRefGoogle Scholar
  19. Harder, D. R., 1987, Pressure-induced myogenic activation of cat cerebral arteries is dependent on intact endothelium, Circ. Res. 60: 102–107.PubMedCrossRefGoogle Scholar
  20. Hayoz, D., Tardy, Y., Rutschmann, B., Mignot, J. P., Achakri, H., Feihl, F., Meister, J.-J., Waeber, B., and Brunner, H. R., 1993, Spontaneous diameter oscillations of the radial artery in humans, Jm. J. Physiol. 264: H2080–H2084.Google Scholar
  21. Hayoz, D., Bernardi, L., Noll, G., Weber, R., Porret, C.-A., Passino, C., Wenzel, R., and Stergiopulos, N., 1995, Flow-mediated vasomotion: a potential functional approach to vascular integrity, J. Hypertens.: In review.Google Scholar
  22. Hermsmeyer, K., 1973, Multiple pacemaker sites in spontaneously active vascular smooth muscle, Circ. Res. 33:244–251.PubMedCrossRefGoogle Scholar
  23. Huxley, A. F., 1980, Reflections on muscle. Princeton: Princeton University Press.Google Scholar
  24. Maglietta, M., 1981, Vasomotor activity, time-dependent fluid excange and tissue pressure, Microvas. Res. 21: 153–164.CrossRefGoogle Scholar
  25. Intaglietta, M., 1991, Arteriolar vasomotion: implications for tissue ischemia, Blood Vessels 28: 1–7.PubMedGoogle Scholar
  26. Johansson, B., and Bohr, D. F., 1966, Rhythmic activity in smooth muscle from small subcutaneous arteries, Am. J. Physiol. 210: 801–806.PubMedGoogle Scholar
  27. Jones, T. W., 1852, Discovery that veins of bat’s wing (which are furnished with valves) are endowed with rhythmical contractility and that onward flow of blood is accelerated by each contraction, Phil. Trans. R. Soc. Lond. 142: 131–136.CrossRefGoogle Scholar
  28. Khayutin, V. M., 1993, Active arterial function: prompt adaptation of the vascular lumen to the blood flow velocity and viscosity. In: Contemporary problems of biomechanics, G. Chernyi and A. Regirer, (Eds.), Moscow: Mir, pp. 142–207.Google Scholar
  29. Kireeva, E. E., and Klochkov, B. N., 1982, Nonlinear model for vascular tone, Transl. Mech. Compos. Mater. (Russian) 5: 887–894.Google Scholar
  30. Knot, H. J., de Ree, M. M., Gaehwiler, B. H., and Rueegg, U. T., 1991, Modulation of electrical activity and of intracellular calcium oscillations of smooth muscle cells by calcium antagonists, agonists, and vasopressin., J. Cardiovasc. Pharmacol. 18: S7–S14.PubMedGoogle Scholar
  31. Morita-Tsuzuki, Y., Bouskela, E., and Hardebo, J. E., 1993, Effects of nitric oxide synthesis blockade and angiotensin II on blood flow and spontaneous vasomotion in the cat cerebral microcirculation, Acta Physiol. Scand. 148: 449–454.PubMedCrossRefGoogle Scholar
  32. Mulvany, M. J., 1983, Functional characteristics of vascular smooth muscle, Prog. Appl. Microcirc. 3: 4–18.Google Scholar
  33. Mulvany. M. J., and Aalkaer, C., 1990, Structure and function of small arteries, Physiol. Rev. 70(4): 922–961.Google Scholar
  34. Murphy, R. A., 1980, Mechanics of vascular smooth muscle. In: Handbook of Physiology, S. R. Geiger, (Eds.), Bethesda, Maryland: American Physiological Society, pp. 325–351.Google Scholar
  35. Osol, G., and Halpern, W., 1988, Spontaneous vasomotion in pressurized cerebral arteries from genetically hypertensive rats., Am. J. Physiol. 254: H28–H33.PubMedGoogle Scholar
  36. Oude Vrielink, H. H. E., Slaaf, D. W., Tangelder, G. J. and Reneman, R. S., 1989, Changes in vasomotion pattern and local arteriolar resistance during stepwise pressure reduction, Pfluegers Archiv 414: 571–578.PubMedCrossRefGoogle Scholar
  37. Oude Vrielink, H. H. E., Slaaf, D. W., Tangelder, G. J., Weijmer-Van Velzen, S., and Reneman, R. S., 1990, Analysis of vasomotion waveform changes during pressure reduction and adenosine application, Am. J. Physiol. 258: H29–H37.PubMedGoogle Scholar
  38. Porret, C.-A., Stergiopulos, N., Hayoz, D., Brunner, H. R., and Meister, J.-J., 1995, On the vasomotion of the conduit arteries of the human upper limbs: an in vivo study, Am. J. Physiol: 269: H1852–H1858.PubMedGoogle Scholar
  39. Rembold, C. M., and Murphy, R. A., 1990, Latch-bridge model in smooth muscle: [Ca2+]i can quantitatively predict stress, Am. J. Physiol. 259: C251–C257.PubMedGoogle Scholar
  40. Secomb, T. W., Intaglietta, M., and Gross, J. F., 1989, Effects of vasomotion on micro-circulatory mass transport, Prog. Appl. Microcirc. 15: 41–48.Google Scholar
  41. Stergiopulos, N., Meister, J.-J., Achakri, H., Hayoz, D., and Brunner, H. R. (1993) Noninvasive estimation of the properties of the radial artery wall: continuous long-time measurements and the influence of vascular tone. ASME Summer Bioengineering Meeting, Breckenridge, Colorado.Google Scholar
  42. Tardy, Y, Meister, J. J., Perret, F., Brunner, H. R., and Arditi, M., 1991, Non-invasive estimate of the mechanical properties of peripheral arteries from ultrasonic and photoplethysmographic measurements, Clin. Phys. Physiol. Meas. 12(1): 39–54.PubMedCrossRefGoogle Scholar
  43. Tardy, Y. 1992 Non-invasive characterization of the mechanical properties of arteries. Ph.D. thesis, Swiss Federal Institute of Technology, Lausanne.Google Scholar
  44. Ursino, M., and Fabbri, G., 1992, Role of the myogenic mechanism in the genesis of microvascualr oscillations (vasomotion): analysis with a mathematical model., Microvasc. Res. 43: 156–177.PubMedCrossRefGoogle Scholar
  45. Yamashiro, S. M., Slaaf, D. W., Reneman, R. S., Tangelder, G. J., and Bassingthwaighte, J. B., 1990, Fractal analysis of vasomotion, Ann. N. Y. Acad. Sci. 591: 410–416.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • N. Stergiopulos
    • 1
  • J.-J. Meister
    • 1
  1. 1.Biomedical Engineering LaboratorySwiss Federal Institute of TechnologyLausanneSwitzerland

Personalised recommendations