Non-Planar Geometry and Non-Planar-Type Flow at Sites of Arterial Curvature and Branching: Implications for Arterial Biology and Disease

  • C. G. Caro
  • D. J. Doorly
  • M. Tarnawski
  • K. T. Scott
  • Q. Long
  • C. L. Dumoulin

Abstract

There has been interest in arterial mechanics over centuries, but this has mainly been confined to the blood pressure, the volume flow rate of the blood and pulse wave propagation (see chapter by Skalak in this volume). Rindfleisch, in 1872, proposed that sites in arteries which experience ‘the full stress and impact of the blood’ are prone to atheroma. However, it is only within the past 20–30 years that interest has developed in the details of the arterial velocity field.

Keywords

Wall Shear Stress Aortic Arch Axial Velocity Common Iliac Artery Carotid Bifurcation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altobelli, S.A., and Nerem, R.M., 1985, An experimental study of coronary artery fluid mechanics, Biomech. Eng. 107:16–23.CrossRefGoogle Scholar
  2. Back, M.R., Cho, Y.I., and Back, L.H., 1985, Fluid dynamic study in a femoral artery branch casting of man with upstream main lumen curvature for steady flow, J. Biomech. Eng. 107:240–248.PubMedCrossRefGoogle Scholar
  3. Batten, J.R., and Nerem, R.M., 1982, Model study of flow in curved and planar arterial bifurcations, Card. Res. 16:178–186.CrossRefGoogle Scholar
  4. Berger, S.A., Talbot, L., and Yao, L.S., 1983, Flow in curved pipes, Ann. Rev. Fluid Mech. 15:461–512.CrossRefGoogle Scholar
  5. Caro, C.G., Fitz-Gerald, J.M., and Schroter, R.C., 1971, Atheroma and arterial wall shear: observation, correlation and proposal of a shear dependent mass transfer mechanism for atherogenesis, Proc. Roy. Soc. B 177:109–159.CrossRefGoogle Scholar
  6. Caro, C.G., Dumoulin, C.L., and Graham J.M.R., 1992, Secondary flow in the human common carotid artery imaged by MR angiography, J. Biomech. Eng. 114:147–149.PubMedCrossRefGoogle Scholar
  7. Caro, C.G., Doorly, D.J., Tarnawski, M., Scott, K.T., Johnson, M.J., and Dumoulin, C.L., 1994, Non-planar curvature and branching of arteries, J. Physiol. 475.P:60P.Google Scholar
  8. Davies, P.F., and Barbee, K.A., 1994, Endothelial cell surface imaging: insights into hemodynamic force transduction, NIPS 9:153–155.Google Scholar
  9. Dean, W.R., 1927, Note on the motion of fluid in a curved pipe, Phil. Mag. 4:208–223.Google Scholar
  10. Dean, W.R., 1928, The stream-line motion of fluid in a curved pipe, Phil. Mag. 5:673–695.Google Scholar
  11. Dobrin, P.B., Litooy, F.N., and Endean, E.D., 1989, Mechanical factors predisposing to intimai hyperplasia and medial thickening in autogenous vein grafts, Surgery 105:393–400.PubMedGoogle Scholar
  12. Doorly, D.J., Tarnawski, M., Caro, C.G., Scott, K.T., and Cybulski, G., 1994, Unsteady arterial flow, distensibility and velocity distribution measurement techniques, Clin. Haemorheol. 14:426.Google Scholar
  13. Dumoulin, C.L., Doorly, D.J. and Caro, C. G., 1993, Quantitative measurement of velocity at multiple positions using comb excitation and Fourier velocity encoding, Magn. Resort. Med. 29:44–52.CrossRefGoogle Scholar
  14. Ethier, C.R., Zhang, X.D., Karpik, S.R., Johnston, K.W., and Steinman, D.A., 1994, Flow patterns in hooded vs. non-hooded anastomoses. 2nd World Congress of Biomechanics, Amsterdam, II:259b.Google Scholar
  15. Farthing, S., and Peronneau, P., 1979, Flow in the thoracic aorta, Card. Res. 13:607–620.CrossRefGoogle Scholar
  16. Fillinger, M.F., Reinitz, E.R., Schwartz, R. A., Resetarits, D.E., Paskanik, A.M., Bruch, D., and Bredenberg, C.E., 1990, Graft geometry and venous intimal-medial hyperplasia in arteriovenous loop grafts. J. Vase. Surg. 11:556–566.Google Scholar
  17. Fox, B., James, K., Morgan, B., and Seed. W. A., 1982, Distribution of fatty and fibrous plaques in young human coronary arteries, Atherosclerosis 41:337–347.PubMedCrossRefGoogle Scholar
  18. Frangos, J.A., Eskin, S.G., Mclntyre, L.V., and Ives, C.L., 1985. Flow effects on prostacyclin production by cultured endothelial cells, Science 227:1477–1479.PubMedCrossRefGoogle Scholar
  19. Frazin, L.J., Lanza, G., Vonesh, M., Khasho, F., Spitzzeri, C., McGee, S., Mehlman, F.D., Chandran, K.B., Talano, J., and McPherson, D., 1990, Functional chiral asymmetry in descending thoracic aorta, Circulation 82:1985–1994.PubMedCrossRefGoogle Scholar
  20. Friedman, M.H., Hutchins, G.M., Bargeron, C.B., Deters, O.J., and Mark, F.F., 1981, Correlation between intimai thickness and fluid shear in human arteries, Atherosclerosis 39:425–436.PubMedCrossRefGoogle Scholar
  21. Friedman, M.H., Deters, O.J., Mark, F.F., Bargeron, C.B., and Hutchins, G.M., 1983, Arterial geometry affects hemodynamics: a potential risk factor for atherosclerosis, Atherosclerosis 46:225–231.PubMedCrossRefGoogle Scholar
  22. Germano, M., 1982, On the effect of torsion on a helical pipe flow, J. Fluid Mech. 125:1–8.CrossRefGoogle Scholar
  23. Henderson, A.H., 1991, Endothelium in control, Brit. Heart J. 65:116–125.PubMedCentralPubMedCrossRefGoogle Scholar
  24. Hoydu, A.K., Bergey, P. D., and Haselgrove, J.C., 1994, A MRI bolus tagging method for observing helical flow in the descending aorta, Magn. Reson. Med. 32:794–800.PubMedCrossRefGoogle Scholar
  25. Hutchins, G.M., 1983, Arterial geometry affects hemodynamics: a potential risk factor for atherosclerosis, Atherosclerosis 46:225–231.PubMedCrossRefGoogle Scholar
  26. Johnson M.J., Caro, C.G., Scott, K.T., Doorly, D.J., Tarnawski, M., and Dumoulin, C.L., 1994, Indicator dispersion in planar and non-planar artery models, J. Physiol. 475.P: 11 P.Google Scholar
  27. Jones, S.A., Giddens, D.P., Loth, F., Kajiya, F., Morita, I., Hiramatsu, O., Ogasawara, Y., Tsujioka, K., and Zarins, C.K., 1994, In-vivo measurements of blood flow velocity profiles in canine ilio-femoral anastomotic bypass grafts. 2nd World Congress of Biomechanics, Amsterdam, II: 167b.Google Scholar
  28. Kamiya, A., and Togawa, T., 1980, Adaptive regulation of wall shear stress to flow change in the canine carotid artery, Am. J. Physiol. 239:H14–H21.PubMedGoogle Scholar
  29. Kao, H.C., 1987, Torsion effect on fully developed flow in a helical pipe, J. Fluid Mech. 184:335–356.CrossRefGoogle Scholar
  30. Karino, T., Takeuchi, S., Kobayashi, N., and Abe, H., 1994, Vascular geometry, flow patterns and preferred sites for aneurysm formation in human intracranial arteries, Second World Congress of Biomechanics, Amsterdam II:259a.Google Scholar
  31. Kjaernes, M., Svindland, A., Walloe, L., and Wille, S., 1981, Localisation of early atherosclerotic lesions in an arterial bifurcation in humans, Acta Pathologica et Microbiologica Scandinavica A 89:35–40.Google Scholar
  32. Kilner, P.J., Yang, G. Z., Mohiaddin, R.H., Firmin, D.N., and Longmore, D.B., 1993, Helical and retrograde secondary flow patterns in the aortic arch studied by three-directional magnetic resonance velocity mapping, Circulation 88:2235–2247.PubMedCrossRefGoogle Scholar
  33. Liepsch, D., (ed)., 1990, Biofluid Mechanics: Blood flow in large vessels. Proc. 2nd Int. Symp. Berlin: Springer-Verlag.Google Scholar
  34. Liepsch, D., (ed)., 1994, Biofluid Mechanics: Proc. 3rd Int. Symp., Dusseldorf: VDI-Verlag.Google Scholar
  35. Lou, Z., and Yang, W-J., 1992, Biofluid dynamics at arterial bifurcations, Crit. Rev. Biomed. Eng. 19:455–493.PubMedGoogle Scholar
  36. Manlapaz, R.I., and Churchill, S.W., 1980, Fully developed laminar flow in a helically coiled tube of finite pitch, Chem. Eng. Commun. 7:57–78.CrossRefGoogle Scholar
  37. Masawa, N., Glagov, S., and Zarins, C.K., 1994, Quantitative morphologic study of intimal thickening at the human carotid bifurcation: I. Axial and circumferential distribution of maximum intimai thickening in asymptomatic uncomplicated plaques, Atherosclerosis 107:137–146.PubMedCrossRefGoogle Scholar
  38. Moore, J.E., Maier, S.E., Ku, D.N., and Boesiger, P., 1994, Haemodynamics in the abdominal aorta: a comparison of in vitro and in vivo measurements, J. Appl. Physiol. 76:1520–1527.PubMedGoogle Scholar
  39. Mosora, F., Caro, C.G., Krause, E., Schmid-Schonbein, H., Baquey, C., and Pelissier, R., (eds)., 1990, Biomechanical Transport Processes, New York: Plenum Press.Google Scholar
  40. Ojha, M., 1994, Wall shear stress temporal gradient and anastomotic intimai hyperplasia, Circ. Res. 74:1227–1231.PubMedCrossRefGoogle Scholar
  41. Pao, Y.C., Lu, J.T., and Ritman, E.L., 1992, Bending and twisting of an in vivo coronary artery at a bifurcation, J. Biomech. 25:287–295.PubMedCrossRefGoogle Scholar
  42. Paulsen, P.K., and Hasenkam, J.M., 1983, Three-dimensional visualization of velocity profiles in the ascending aorta in dogs, measured with a hot-film anemometer, J. Biomech. 16:201–210.PubMedCrossRefGoogle Scholar
  43. Perktold, K., Florian, H., Hilbert, D., and Peter, R., 1988, Wall shear stress distribution in the human carotid siphon during pulsatile flow, J. Biomech. 21:663–671.PubMedCrossRefGoogle Scholar
  44. Pflugbeil, G., Troster, J., Liepsch, D., and Maurer, P.C., 1994, Special fluid dynamic profiles in different models of arterio-venous fistulas: consequences for patients on dialysis. Proc. 3rd Int. Symp. Dusseldorf: VDI-Verlag, 11–14.Google Scholar
  45. Rindfleisch, E., 1872, A Manual of Pathological Histology, Vol 1, London, New Sydenham Society.Google Scholar
  46. Sabbah, H.N., Walburn, F.J., and Stein, P.D., 1984, Patterns of flow in the left coronary artery, J. Biomech. Eng. 106:272–279.PubMedCrossRefGoogle Scholar
  47. Schettler, G., Nerem, R.M., Schmid-Schonbein, H., Morl, H., and Diehm, C., (eds), 1983, Fluid Dynamics as a Localising Factor for Atherosclerosis, Berlin: Springer-Verlag.Google Scholar
  48. Schölten, F. G., and Wensing, P. J. W., 1995, Atherogenesis in the distal part of the femoral artery: a functional anatomical study of local factors, PhD Thesis, University of Utrecht.Google Scholar
  49. Stonebridge, P.A., and Brophy, C.M., 1991, Spiral laminar flow in arteries? Lancet 338:1360–1361.PubMedCrossRefGoogle Scholar
  50. Tompsett, D.H., 1967, Casts of the vessels of the head and vertebral column, Br. J. Surg. 54:719–723.PubMedCrossRefGoogle Scholar
  51. Wang, C.Y., 1981, On the low Reynolds-number flow in a helical pipe, J. Fluid Mech. 108:185–194.CrossRefGoogle Scholar
  52. White, S.S., Zarins, C.K., Giddens, D.P., Bassiouny, H., Loth, F., Jones, S.A., and Glagov, S., 1993, Hemodynamic patterns in two models of end-to-side vascular graft anastomoses. J. Biomech. Eng. 115:104–111.PubMedCrossRefGoogle Scholar
  53. Yearwood, T.L., and Chandran, K.B., 1984, Physiological pulsatile flow experiments in a model of the human aortic arch, J. Biomech. 15:683–704.CrossRefGoogle Scholar
  54. Yoshida, Y., Yamaguchi, T., Caro, C.G., Glagov, S., and Nerem, R.M., (eds), 1988, Role of Blood Flow in Atherogenesis, Tokyo: Springer-Verlag.Google Scholar
  55. Zarins, C.K., Giddens, D.P., Bhjaradvaj, B.K., Sotiurai, V.S., Mabon, R.F., and Glagov, S., 1983, Carotid bifurcation atherosclerosis: quantitative correlation of plaque localisation with flow velocity profiles and wall shear stress, Circulation Research, 53:502–514.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • C. G. Caro
    • 1
  • D. J. Doorly
    • 1
  • M. Tarnawski
    • 1
  • K. T. Scott
    • 1
  • Q. Long
    • 1
  • C. L. Dumoulin
    • 2
  1. 1.Centre for Biological and Medical Systems Imperial CollegeLondonUK
  2. 2.GE Corporate Research and Development Center SchenectadyNew YorkUSA

Personalised recommendations