Biological Control of Root Diseases with Pseudomonads

  • Albert Rovira
  • Maarten Ryder
  • Adrian Harris
Part of the NATO ASI Series book series (NSSA, volume 230)

Abstract

Fluorescent pseudomonads have been implicated in suppressive soils by many researchers (Bakker et al., 1990; Cook and Rovira, 1976; Défago and Haas, 1990; Thomashow and Weller, 1990a; Weller, 1988).

Keywords

Biological Control Biological Control Agent Fusarium Wilt Pseudomonas Fluorescens Rhizoctonia Solani 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Ahl, P., Voisard, C., and Défago, G., 1986, Iron bound siderophores, cyanic acid and antibiotics involved in suppression of Thielaviopsis by a Pseudomonas fluorescens strain, J. Phytopathol., 116: 121.CrossRefGoogle Scholar
  2. Bahme, J. B., Schroth, M. N., Gundy, S. D., Weinhold, A. R., and Tolentine, D. M., 1988, Effect of inocula delivery systems on rhizobacterial colonization of underground organs of potato, Phytopathology, 79: 534.CrossRefGoogle Scholar
  3. Baker, P. A. H. M., van Peer, R., and Schippers, B., 1990, Suppression of soil-borne plant pathogens by fluorescent pseudomonas, pages 217–230, in: “Biotic Interactions and Soil-borne Diseases”, A. B. R. Beemster, G. J. Bollen, M. Gerlagh, M. A. Ruissen, B. Schippers and A. Tempel, eds., Elsevier Oxford.Google Scholar
  4. Barry, G. F., 1988, A broad host-range shuttle system for gene insertion into the chromosomes of Gram-negative bacteria, Gene, 71: 75.PubMedCrossRefGoogle Scholar
  5. Bowen, G. D., and Rovira, A. D., 1976, Microbial colonization of plant roots, Annu. Rev. Phytopathol., 14: 121.CrossRefGoogle Scholar
  6. Brisbane, P. G., and Rovira, A. D., 1988, Mechanisms of inhibition of Gaeumannomyces graminis var. tritici by fluorescent pseudomonads, Plant Pathol., 37: 104.CrossRefGoogle Scholar
  7. Buyer, J. S., and Sikora, K. J., 1990, Rhizosphere interactions and siderophores, Plant and Soil, 129: 101.CrossRefGoogle Scholar
  8. Cook, R. J., and Baker, K. F., 1983, “The Nature and Practice of Biological Control of Plant Pathogens”, Am. Phytopathol. Soc., St Paul, MN.Google Scholar
  9. Cook, R. J., and Rovira, A. D., 1976, The role of bacteria in the biological control of Gaeumannomyces graminis by suppressive soils, Soil Biol. Biochem., 8: 269.CrossRefGoogle Scholar
  10. Davies, K. G., and Whitbread, R., 1989, Factors affecting the colonization of a root system by fluorescent pseudomonas: The effects of water, temperature and soil microflora, Plant and Soil, 116: 247.CrossRefGoogle Scholar
  11. Défago, G., and Haas, D., 1990, Pseudomonads as antagonists of soilborne plant pathogens: modes of action and genetic analysis, pages 249–291, in: “Soil Biochemistry” Vol. 6, J. M. Bollag, and G. Stotzky, eds., Marcel Dekker, N.Y.Google Scholar
  12. Défago, G., Berling, C. H., Burger, U., Haas, D., Kahr, G., Keel, C., Voisard, C., Wirthner, P., and Wuthrich, B., 1990, Suppression of black root rot of tobacco and other root diseases by strains of Pseudomonas fluorescens: Potential applications and mechanisms, pages 77–92, in: “Biological Control of Soil-borne Plant Pathogens”, D. Hornby, ed., C.A.B. International Wallingford.Google Scholar
  13. Drahos, D. J., Hemming, B. C., and McPherson, S., 1986, Tracking recombinant organisms in the environment: ß-galactosidase as a selectable non-antibiotic marker for fluorescent pseudomonads, Biotechnology, 4: 439.CrossRefGoogle Scholar
  14. Fravel, D. R., 1988, Role of antibiosis in the biocontrol of plant diseases, Annu. Rev. Phytopathol., 26: 75.CrossRefGoogle Scholar
  15. Granada, G. P., and Sequeíra, L., 1983, Survival of Rseudomonas solanacearum in soil, rhizosphere and plant roots, Can. J. Microbiol., 29: 433.CrossRefGoogle Scholar
  16. Gutterson, N. J., Layton, T. J., Ziegle, J. S., and Warren, G. S., 1986, Molecular cloning of genetic determinants for inhibition of fungal growth by a fluorescent pseudomonad, J. Bact., 165: 696.PubMedGoogle Scholar
  17. Hamdan, H., Thomashow, L. S., and Weller, D. M., 1991, Relative importance of fluorescent siderophores and other factors in biological control of Gaeumannomyces graminis var. tritici by Pseudomonas fluorescens 2–79 and M4–80R, Appl. Env. Microbiol., (in press).Google Scholar
  18. Handelsman, J., and Parke, J. L., 1989, Mechanisms in biocontrol of soil-borne plant pathogens, pages 27–61, in: “Plant-Microbe Interactions”, T. Kosuge, and E. Nester, eds., McGraw-Hill, New York.Google Scholar
  19. Harris, A. R., Schisler, D. A., Rowden, R. G., and Ryder, M. H., 1991, Control of damping-off, and growth promotion, in bedding plants by soil bacteria and fungi, Int. Org. for Biol. and Integr. Control of Noxious Animals and Plants (in press).Google Scholar
  20. Howell, C. R., and Stipanovic, R. D., 1979, Control of Rhizoctonia solani on cotton seedlings with Pseudomonas fluorescens and with an antibiotic produced by the bacterium, Phytopathology, 69: 480.CrossRefGoogle Scholar
  21. Howell, C. R., and Stipanovic, R. D., 1980, Suppression of Pythium ultimum induced damping-off of cotton seedlings by Pseudomonas fluorescens and its antibiotic, pyoluteorin, Phytopathology, 70: 712.CrossRefGoogle Scholar
  22. Kloepper, J. W., Leong, J., Teintze, M., and Schroth, M. N., 1980, Pseudomonas siderophores:-a mechanism explaining disease suppressive soils, Curr. Microbiol., 4: 317.CrossRefGoogle Scholar
  23. Kúc, J., 1990, Immunization for the control of plant disease, pages 355–373, in: “Biological Control of Soil-borne Plant Pathogens”, D. Hornby, ed., C.A.B. International, Wallingford.Google Scholar
  24. Leeman, M., Raaijmakers, J. M., Bakker, P. A. H. M., and Schippers, B., 1991, Immunofluorescence colony staining for monitoring pseudomonads introduced into soil, pages 374–380, in: “Biotic Interactions and Soil-borne Diseases”, A. B. R. Beemster, G. J. Bollen, M. Gerlagh, M. A. Ruissen, B. Schippers, and A. Tempel, eds., Elsevier Oxford.Google Scholar
  25. Leisinger, T., and Margraff, R., 1978, Secondary metabolites of fluorescent pseudomonads, Microbiol. Rev., 43: 422.Google Scholar
  26. Liddell, C. M., and Parke, J. L., 1989, Enhanced colonization of pea tap roots by a fluorescent pseudomonad biocontrol agent by water infiltration into soil, Phytopathology, 79: 1327.CrossRefGoogle Scholar
  27. Loper, J. E., 1990, Molecular and biochemical bases for activities of biological control agents, pages 235–347, in: “New Directions in Biological Control: Alternatives for Suppressing Agricultural Pests and Diseases”, R. R. Baker, and P. E. Dunn, eds., Alan R. Liss, Inc. N.Y.Google Scholar
  28. Parke, J. L., Moen, R., Rovira, A. D., and Bowen, G. D., 1986, Soil water flow affects the rhizosphere distribution of a seed-borne biological control agent, Pseudomonas fluorescens, Soil Biol. Biochem., 18: 583.CrossRefGoogle Scholar
  29. Parke, J. L., Rand, R. E., Joy, A. E., and King, E. B., 1991, Biological control of Aphanomyces root rot and damping-off of peas with seed-applied Pseudomonas cepacia and Pseudomonas fluorescens, Plant Dis., (in press).Google Scholar
  30. Paulitz, T. C., 1990, Biochemical and ecological aspects of competition in biological control, pages 713–724, in: “New Directions in Biological Control: Alternatives for Suppressing Agricultural Pests and Diseases”, R. R. Baker, and P. E. Dunn, eds., Alan R. Liss, Inc. N.Y.Google Scholar
  31. Rovira, A. D., and Ridge, E. H., 1973, The use of a selective medium to study the ecology of Pseudomonas spp. in soil, Bull. Ecol. Res. Comm., (Stockholm) 17: 329.Google Scholar
  32. Rovira, A. D., Bowen, G. D., and Foster, R. C., 1983, The significance of rhizosphere microflora and mycorrhizas in plant nutrition, pages 6193, in: “Encyclopedia of Plant Physiology, New Series, Vol. 15”, A. Kauchli,and R. L. Bieleski, eds., Springer-Verlag, Berlin.Google Scholar
  33. Ryder, M. H., and Borrett, M. A., 1991, Root colonization by non-fluorescent pseudomonads used for the control of wheat take-all. Int. Org. for Biol. and Integr. Control of Noxious Animal and Plants (in press).Google Scholar
  34. Schippers, B., Bakker, A. W., Bakker, P. A. H. M., and van Peer, R., 1991, Beneficial and detrimental effects of HCN-producing pseudomonads on rhizosphere interactions, pages 211–219, in: “The Rhizosphere and Plant Growth”, D. L. Keister, and P. B. Cregar, eds., Kluwer Acad. Publ., The Netherlands.Google Scholar
  35. Schisler, D. A., Ryder, M. H., and Rovira, A. D., 1989, An improved in vitro technique for rapidly assaying rhizosphere bacteria for the production of compounds inhibitory to Rhizoctonia solani and Gaeumannomyces graminis var. tritici, in: “Proc. Symposium: The Rhizosphere and Plant Growth(Beltsville Symposia in Agric. Research, 14)”, D. L. Keister and Gregan, P. B., eds., Kluwer Acad. Publ., The Netherlands.Google Scholar
  36. Scher, F. M., and Baker, R., 1982, Effect of Pseudomonas putida and a synthetic iron chelator on induction of soil suppressiveness to Fusarium wilt pathogens, Phytopathology, 72: 1567.CrossRefGoogle Scholar
  37. Simon, A., and Ridge, E. H., 1974, The use of ampicillin in a simplified selective medium for the isolation of fluorescent pseudomonads, J. Appl. Bact., 37: 459.CrossRefGoogle Scholar
  38. Smiley, R. W., and Cook, R. J., 1973, Relationship between take-all of wheat and rhizosphere pH in soils fertilized with ammonium vs. nitrate-nitrogen, Phytopathology, 63: 882.CrossRefGoogle Scholar
  39. Stutz, E. W., Kahr, G., and Défago, G., 1989, Clays involved in the suppression of tobacco black root rot by a strain of Pseudomonas fluorescens, Soil Biol. Biochem., 21: 361.CrossRefGoogle Scholar
  40. Swinburne, T. R. (Ed.), 1986, “Iron, Siderophores and Plant Disease”, NATO ASI Series, Vol. 117, Plenum Press, N.Y.Google Scholar
  41. Tan, Y. U., Bond, W. J., Rovira, A. D., Brisbane, P. G., and Griffin, D. M., 1991, Transport of a biological control agent, Pseudomonas fluorescens in soil, Soil Biol. Biochem., (in press).Google Scholar
  42. Tanii, A., Takenchi, T., and Horita, H., 1990, Biological control of scab, black scarf and soft rot of potato by seed tuber bacterization, pages 143–164, in: “Biological Control of Soil-borne Plant Pathogens”, D. Hornby, ed., C.A.B. International, Wallingford.Google Scholar
  43. Thomashow, L. S., and Weller, D. M., 1990a, Application of fluorescent pseudomonas to control root diseases of wheat and some mechanisms of disease suppression, pages 109–122, in: “Biological Control of Soil-borne Plant Pathogens”, D. Hornby, ed., C.A.B. International, Wallingford.Google Scholar
  44. Thomashow, L. S., and Weller, D. M., 1990b, Role of antibiotics and siderophores in biocontrol of take-all disease of wheat, Plant and Soil, 129: 93.CrossRefGoogle Scholar
  45. Thomashow, L. S., Weller, D. M., Bonsall, R. F., and Pierson, L. S., 1990, Production of the antibiotic phenazine-1-carboxylic acid by fluorescent Pseudomonas species in the rhizosphere of wheat, Appl. Env. Microbiol., 56: 908.Google Scholar
  46. Peer, R., Niemann, G. J., and Schippers, B., 1991, Induced resistance and phytoalexin accumulation in the biological control of Fusarium wilt of carnations by Pseudomonas sp. strain WSC417r, Phytopathology, (in press).Google Scholar
  47. Peer, R., Punte, H. L. M., Weger, L. A., and Schippers, B., 1990, Characterization of root surface and endorhizosphere pseudomonads in relation to their colonization of roots, Appl. Env. Microbiol., 56: 2462.Google Scholar
  48. Weller, D. M., 1984, Distribution of a take-all suppressive strain of Pseudomonas fluorescens on seminal roots of winter wheat, Appl. Env. Microbiol., 48: 897.Google Scholar
  49. Weller, D. M., 1988, Biological control of soil-borne plant pathogens in the rhizosphere wilt bacteria, Annu. Rev. Phytopathol., 26: 378.CrossRefGoogle Scholar
  50. Weller. D. M., and Cook, R. J., 1983, Suppression of take-all by seed treat- ments with fluorescent pseudomonads, Phytopathology, 73: 463.CrossRefGoogle Scholar
  51. Weller, D. M., and Thomashow, L. S., 1990, Antibiotics: evidence for their production and sites where they are produced, pages 703–711, in: “New Directions in Biological Control: Alternatives for Suppressing Agricultural Pests and Diseases”, R. R. Baker, and P. E. Dunn, eds., Alan R. Liss, Inc. N.Y.Google Scholar
  52. Weller, D. M., Zhang, B. -X., and Cook, R. J., 1985, Application of a rapid screening test for selection of bacteria suppressive to take-all of wheat, Plant Dis., 69: 710.Google Scholar
  53. Zhang, B.-X., Ge, Q. X., Chen, D. H., Wang, Z. Y., and He, S. S., 1990, Biological and chemical control of root diseases on vegetable seedlings in Zhejiang province, China, pages 181–196, in: “Biological Control of Soil-borne Plant Pathogens”, D. Hornby, ed., C.A.B. International, Wallingford.Google Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Albert Rovira
    • 1
  • Maarten Ryder
    • 1
  • Adrian Harris
    • 1
  1. 1.CSIRO Division of SoilsGlen OsmondAustralia

Personalised recommendations