Kinetics of Proton-Transport Coupled ATP Synthesis in Chloroplasts

  • Peter Gräber
Part of the Ettore Majorana International Science Series book series (EMISS, volume 51)


The coupling of (scalar) chemical reactions with (vectorial) transport of molecules or ions across a membrane occurs at practically all biological membranes, e.g., at the plasma membranes of all cells as well as in cell organelles like mitochondria and chloroplasts. Of special importance is the coupling between proton transport and ATP-synthesis or ATP-hydrolysis. This process is catalyzed by a membrane-bound F0F1-ATPase (ATP-synthase). The importance of this process is demonstrated by the fact that in man about 50 kg ATP per day are synthesized by this process and that this ATP is then used as energy source for most biochemical reactions in the organism (muscle contraction, molecule- and ion transport, biosynthesis of different molecules).


Proton Transport Proton Efflux Internal Aqueous Phase Sigmoidal Dependence Membrane Energization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    I. Prigogine, Thermodynamics of Irreversible Processes, Interscience Publisher, Wiley and Sons, New York (1967).Google Scholar
  2. [2]
    F.A. Sauer, in Current Topics in Membranes and Transport, Academic Press, New York (1984), Vol. 19, p. 21.Google Scholar
  3. [3]
    P. Mitchell, Nature (London), 191, 144 (1961).CrossRefGoogle Scholar
  4. [4]
    P. Mitchell, Chemiosmotic Coupling and Energy Transduction, Glynn Research, Bodmin, England (1968).Google Scholar
  5. [5]
    R.J.P. Williams, J. Theor. Biol., 1, 1 (1961).CrossRefGoogle Scholar
  6. [6]
    H.W. Westerhoff, B.A. Melandri, F.A. Venturoli and D.B. Kell, Biochim. Biophys. Acta, 768, 257 (1984).CrossRefGoogle Scholar
  7. [7]
    Y. de Kouchkovsky, C. Sigalat, F. Maraux and S. Phung Nhu Hung, in Ion Interactions in Energy Transfer Biomembranes, G.C. Papageorgiou et al., (Editors), Plenum Press, New York (1985), p. 119.Google Scholar
  8. [8]
    G.F. Azzone, V. Petronelli, D. Pietrobon, M. Zoratti, in Achievements and Perspectives of Mitochondrial Research, Vol. I., Bioenergetics (E. Quagliariello et al. (Editors), Elsevier Science Publishers, Amsterdam (1985), p. 387.Google Scholar
  9. [9]
    R.A. Dilley, S.M. Theg and W.A. Beard, Annu. Rev. Plant Physiol., 38, 348 (1987).CrossRefGoogle Scholar
  10. [10]
    J. Rosing and C. Slater, Biochim. Biophys. Acta, 267, 275 (1972).CrossRefGoogle Scholar
  11. [11]
    H. Rottenberg, J. Bioenerg., 7, 61 (1975).CrossRefGoogle Scholar
  12. [12]
    G.F. Azzone, D. Pietrobon, M. Zoratti, Curr. Top. Bioenerg., 13, 2 (1984).Google Scholar
  13. [13]
    H. Rottenberg, this volume.Google Scholar
  14. [14]
    B. Rumberg, in Encyclopedia of Plant Physiology, Photosynthesis I, A (A. Trebst and M. Avron (Editors), Springer Verlag, Berlin (1977), Vol. 5, p. 405.CrossRefGoogle Scholar
  15. [15]
    J.B. Jackson and D.B. Nicholls, Methods Enzymol., 127, 41 (1986).Google Scholar
  16. [16]
    L. Wojtczack, in Ion Interactions in Energy Transfer Biomembranes, G.C. Papageorgiou et al. (Editors), Plenum Press, New York (1985), p. 7.Google Scholar
  17. [17]
    A.T. Jagendorf and E. Uribe, Proc. Natl. Acad. Sci USA, 55, 170 (1966).CrossRefGoogle Scholar
  18. [18]
    P. Gräber, U. Junesch and G.H. Schatz, Ber. Bunsenges. Phys. Chem., 88, 599 (1984).CrossRefGoogle Scholar
  19. [19]
    R.A. Ravizzini, C.S. Andreo, R.H. Vallejos, Biochim. Biophys. Acta, 591, 135 (1980).CrossRefGoogle Scholar
  20. [20]
    C.M. Nalin, R.E. McCarty, J. Biol. Chem., 259, 7275 (1984).Google Scholar
  21. [21]
    S.R. Ketcham, J.W. Davenport, K. Warncke, R.E. McCarty, J. Biol. Chem., 259, 7286 (1984).Google Scholar
  22. [22]
    W. Junge, Eur. J. Biochem., 14, 582 (1970).CrossRefGoogle Scholar
  23. [23]
    P. Gräber, E. Schlodder and H.T. Witt, Biochim. Biophys. Acta, 461, 426 (1977).CrossRefGoogle Scholar
  24. [24]
    D.A. Harris and A.R. Crofts, Biochim. Biophys. Acta, 502, 87 (1978).CrossRefGoogle Scholar
  25. [25]
    P. Gräber and E. Schlodder, in Photosynthesis II, E. Akoyunoglou (Editor), Balaban International Science Service, Philadelphia PA (1981), p. 867.Google Scholar
  26. [26]
    B. Rumberg and U. Becher, in H+-ATPase/synthase; Structure, Function, Regulation, S. Papa, et al. (Editors), Adriatica Editrice, Bari (1984), p. 421.Google Scholar
  27. [27]
    U. Junesch and P. Gräber, Biochim. Biophys. Acta, 893, 275 (1987).CrossRefGoogle Scholar
  28. [28]
    J.D. Mills, P. Mitchell and P. Schürmann, FEBS Lett., 112, 173 (1980).CrossRefGoogle Scholar
  29. [29]
    J.D. Mills and P. Mitchell, Biochim. Biophys. Acta, 679, 75 (1982).CrossRefGoogle Scholar
  30. [30]
    J.E. Tillberg, C. Giersch and U. Heber, Biochim. Biophys. Acta, 461, 31 (1977).CrossRefGoogle Scholar
  31. [31]
    C. Giersch, Biochim. Biophys. Acta, 725, 309 (1983).CrossRefGoogle Scholar
  32. [32]
    S. Bickel-Sandkötter and H. Strotmann, FEBS Lett., 125, 188 (1981).CrossRefGoogle Scholar
  33. [33]
    C. Vinkler, Biochem. Biophys. Res. Comm., 99, 1095 (1981).CrossRefGoogle Scholar
  34. [34]
    W.P. Quick and J.D. Mills, Biochim. Biophys. Acta, 893, 197 (1987).CrossRefGoogle Scholar
  35. [35]
    B. Rumberg and U. Siggel, Naturwiss., 56, 130 (1969).CrossRefGoogle Scholar
  36. [36]
    U. Pick, H. Rottenberg and M. Avron, FEBS Lett., 32, 91 (1973).CrossRefGoogle Scholar
  37. [37]
    G. Thulke, Thesis, TU Berlin (1989).Google Scholar
  38. [38]
    U. Pick and E. Racker, J. Biol. Chem., 245, 2793 (1979).Google Scholar
  39. [39]
    G. Schmidt and P. Gräber, Biochim. Biophys. Acta, 808, 46 (1985).CrossRefGoogle Scholar
  40. [40]
    P. Fromme, Thesis, TU Berlin (1988).Google Scholar
  41. [41]
    F.A.S. Kironde and R.L. Cross, J. Biol. Chem., 261, 12544 (1986).Google Scholar
  42. [42]
    Z. Xue, J.M. Zhou, T. Melese, R.L. Cross and P.D. Boyer, Biochemistry, 13, 3749 (1987).CrossRefGoogle Scholar
  43. [43]
    G. Grubmeyer, R.L. Cross and H.S. Penefsky, J. Biol. Chem., 257, 12092 (1982).Google Scholar
  44. [44]
    H.S. Penefsky, J. Biol. Chem., 260, 13735 (1985).Google Scholar
  45. [45]
    H.S. Penefsky, J. Biol. Chem., 252, 2891 (1977).Google Scholar
  46. [46]
    P.D. Boyer, in Membrane Bioenergetics, C.P. Lee, G. Schatz and L. Ernster (Editors), Addison-Wesley, Reading, MA (1979), p. 461.Google Scholar
  47. [47]
    U. Junesch, Thesis, TU Berlin (1989).Google Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Peter Gräber
    • 1
  1. 1.Biologisches Institut, BioenergetikUniversität StuttgartStuttgart 60Germany

Personalised recommendations