Potential of Toluene-Degrading Systems for the Construction of Hybrid Pathways for Nitrotoluene Metabolism

  • Juan L. Ramos
  • Alí Haïdour
  • Asunción Delgado
  • Estrella Duque
  • María-Dolores Fandila
  • Matilde Gil
  • Guadalupe Piñar
Part of the Environmental Science Research book series (ESRH, volume 49)

Abstract

Wastes from manufacturing processes, together with the widespread use of some nitroaromatic compounds, have polluted waters and soils. Because of their toxicity and mutagenicity, some of these compounds have been designated pollutants whose elimination is a high priority (25). A variety of alternative treatments including physical, chemical and biological (21), have been developed to reduce or eliminate contamination due to hazardous nitroorganic compounds. Physical treatments comprise absorption to activated carbon, filtration and incineration. Chemical approaches involve solvent extraction or surfactant precipitation. These treatments are expensive, and may in some cases generate unwanted products (22). The biological approach, including continuous and batch treatments of liquid wastes, and composting and soil treatments, is usually cheaper and involves less risk to human health or the environment (12, 23, 54). However, nitroaromatic compounds are relatively refractory to mineralization by microbes.

Keywords

Nitro Group Benzyl Alcohol Pseudomonas Putida Catabolic Pathway Sole Nitrogen Source 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abril, M. A., C. Michán, K. N. Timmis, and J. L. Ramos. 1989. Regulator and enzyme specificities of the TOL plasmid-encoded upper pathway for degradation of aromatic hydrocarbons and expansion of the substrate range of the pathway. J. Bacteriol. 171:6782–6790.PubMedGoogle Scholar
  2. 2.
    Bruhn, C., H. Lenke, and H.-J. Knackmuss. 1987. Nitrosubstituted aromatic compounds as nitrogen source for bacteria. Appl. Environ. Microbiol. 53:208–210.PubMedGoogle Scholar
  3. 3.
    Cain, R. B. 1966. Induction of an anthranilate oxidation system during the metabolism of ortho-nitrobonzoate by certain bacteria. J. Gen. Microbiol. 42:197–217.PubMedCrossRefGoogle Scholar
  4. 4.
    Cain, R. B. 1966. Utilization of anthranilic and nitrobenzoic acids by Nocardia opaca and Flavobacterium. J. Gen. Microbiol. 42:219–235.PubMedCrossRefGoogle Scholar
  5. 5.
    Carpenter, D. F., N. G. McCormick, J. H. Cornell, and A. M. Kaplan. 1978. Microbial transformation of 14C-labeled 2,4,6-trinitrotoluene in an activated-sludge system. Appl. Environ. Microbiol. 35:949–954.PubMedGoogle Scholar
  6. 6.
    Cartwright, N. J., and R. B. Cain. 1959. Bacterial degradation of the nitrobenzoic acids. Biochem. J. 71:248–261.PubMedGoogle Scholar
  7. 7.
    Cartwright, N. J., and R. B. Cain. 1959. Bacterial degradation of nitrobenzoic acids. 2. Reduction of the nitro group. Biochem. J. 73:305–314.PubMedGoogle Scholar
  8. 8.
    Delgado, A., and J. L. Ramos. 1994. Genetic evidence for activation of the positive transcriptional regulator XylR, a member of the NtrC family of regulators, by effector binding. J. Biol. Chem. 269:8059–8062.PubMedGoogle Scholar
  9. 9.
    Delgado, A., M. G. Wubbolts, M. A. Abril, and J. L. Ramos. 1992. Nitroaromatics are substrates for the TOL plasmid upper-pathway enzymes. Appl. Environ. Microbiol. 58:415–417.PubMedGoogle Scholar
  10. 10.
    Dickel, O., and H.-J. Knackmuss. 1991. Catabolism of 1,3-dinitrobenzene by Rhodococcus sp. QT-1. Arch. Microbiol. 157:76–79.PubMedCrossRefGoogle Scholar
  11. 11.
    Duque, E., A. Haïdour, F. Godoy, and J. L. Ramos. 1993. Construction of a Pseudomonas hybrid strain that mineralizes 2,4,6-trinitrotoluene. J. Bacteriol. 175:2278–2283.PubMedGoogle Scholar
  12. 12.
    Funk, S. B., D. J. Roberts, D. L. Crawford, and R. L. Crawford. 1993. Initial-phase optimization for bioremediation of munition compound-contaminated soils. Appl. Environ. Microbiol. 59:2171–2177.PubMedGoogle Scholar
  13. 13.
    Gibson, D. T., M. Hensley, H. Yoshioka, and T. J. Mabry. 1970. Formation of (+)-cis-2,3-dihydroxy-l-methylcyclohexa-4,6-diene from toluene by Pseudomonas putida. Biochemistry 9:1626–1630.PubMedCrossRefGoogle Scholar
  14. 14.
    Groenewegen, P. E. J., P. Breeuwer, J. M. L. M. van Helvoort, A. A. M. Langenhoff, F. P. de Vries, and J. A. M. de Bont. 1992. Novel degradative pathway of 4-nitrobenzoate in Comamonas acidovorans NBA-10. J. Gen. Microbiol. 138:1599–1605.PubMedCrossRefGoogle Scholar
  15. 15.
    Haïdour, A., and J. L. Ramos. Identification of products resulting from the biological reduction of 2,4,6-trinitrotoluene, and 2,4-and 2,6-dinitrotoluene by Pseudomonas sp. Appl. Environ. Microbiol., submitted.Google Scholar
  16. 16.
    Haigler, B.E., and J.C. Spain. 1993. Biodegradation of 4-nitrotoluene by Pseudomonas sp. strain 4NT. Appl. Environ. Microbiol. 59:2239–2243.PubMedGoogle Scholar
  17. 17.
    Haigier, B.E., W.H. Wallace, and J.C. Spain. 1994. Biodegradation of 2-nitrotoluene by Pseudomonas sp. strain JS42. Appl. Environ. Microbiol. 60:3466–3469.Google Scholar
  18. 18.
    Harayama, S., R. A. Leppik, M. Rekik, N. Mermod, P. R. Lehrbach, W. Reinecke, and K. N. Timmis. 1986. Gene order of the TOL catabolic plasmid upper pathway operon and oxidation of both toluene and benzyl alcohol by the xylA product. J. Bacteriol. 187:455–461.Google Scholar
  19. 19.
    Herrero, M., V. de Lorenzo, and K. N. Timmis. 1990. Transposon vectors containing non-antibiotic selection markers for cloning and stable chromosomal insertion of foreign DNA in gram-negative bacteria. J. Bacteriol. 172:6557–6567.PubMedGoogle Scholar
  20. 20.
    Jeenes, D. J., W. Reineke, J.-H. Knackmuss, and P. A. Williams. 1982. TOL plasmid pWW0 in constructed halobenzoate-degrading Pseudomonas strains: enzyme regulation and DNA structure. J. Bacteriol. 150:180–187.PubMedGoogle Scholar
  21. 21.
    Kaplan, D.L. 1989. Biotransformation pathways of hazardous energetic organo-nitro compounds, p 155–181.In D. Kamely, A. Chakrabarty, and G. Omenn (ed.), Biotechnology and biodegradation. Portfolio Publishing Co, Houston.Google Scholar
  22. 22.
    Kaplan, D.L., and A.M. Kaplan. 1982. Mutagenicity of 2,4,6-trinitrotoluene-surfactant complexes. Bull. Environ. Contam. Toxicol. 28:33–38.PubMedCrossRefGoogle Scholar
  23. 23.
    Kaplan, D.L., and A.M. Kaplan. 1982. Thermophilic biotransformations of 2,4,6-trinitrotoluene under simulated composting conditions. Appl. Environ. Microbiol. 44:757–760.PubMedGoogle Scholar
  24. 24.
    Ke, Y.-H., L.L. Gee, and N.N. Durham. 1959. Mechanism involved in the metabolism of nitrophenyl-carboxylic acid compounds by microorganisms. J. Bacteriol. 77:593–598.PubMedGoogle Scholar
  25. 25.
    Keith, L. H., and W. A. Telliard. 1979. Priority pollutants. I. A perspective view. Environ. Sci. Technol. 13:416–423.CrossRefGoogle Scholar
  26. 26.
    Lehrbach, P. R., J. Zeyer, W. Reineke, H.-J. Knackmuss, and K. N. Timmis. 1984. Enzyme recruitment in vitro: use of cloned genes to extend the range of haloaromatics degraded by Pseudomonas sp. B13. J. Bacteriol. 158:1025–1032.PubMedGoogle Scholar
  27. 27.
    de Lorenzo, V., S. Fernández, M. Herrero, U. Jakubzik, and K. N. Timmis. 1992. Engineering of alkyl-and haloaromatic-responsive gene expression with mini-transposons containing regulated promoters of biodegradative pathways of Pseudomonas. Gene 130:41–46.CrossRefGoogle Scholar
  28. 28.
    de Lorenzo, V., M. Herrero, V. Jacubzik, and K. N. Timmis. 1990. Mini-Tn5 transposon derivatives for insertion mutagenesis, promoter probing and chromosomal insertion of cloned DNA in gram-negative bacteria. J. Bacteriol. 172:6568–6572.PubMedGoogle Scholar
  29. 29.
    Marqués, S., and J. L. Ramos. 1993. Transcriptional control of the Pseudomonas putida TOL plasmid catabolic pathways. Mol. Microbiol. 9:923–929.PubMedCrossRefGoogle Scholar
  30. 30.
    McCormick, N. G., J. H. Cornell, and A. M. Kaplan. 1978. Identification of biotransformation products from 2,4-dinitrotoluene. Appl. Environ. Microbiol. 35:945–948.PubMedGoogle Scholar
  31. 31.
    McCormick, N. G., F. F. Feeherry, and H. S. Levinson. 1976. Microbial transformation of 2,4,6-trinitrotoluene and other nitroaromatic compounds. Appl. Environ. Microbiol. 31:949–958.PubMedGoogle Scholar
  32. 32.
    Meulien, P., R.-G. Dowling, and P. Broda. 1981. Excision of the 40 kb segment from the TOL plasmid from Pseudomonas putida mt-2 involves direct repeats. Mol. Gen. Genet. 184:97–101.PubMedCrossRefGoogle Scholar
  33. 33.
    Nadeau, L. J., and J. Spain. 1994. The bacterial degradation of m-nitrobenzoic acid, abstr. Q-114, p. 408. Abstr. 94th Annu. Meet. Amer. Soc. Microbiol. 1994.Google Scholar
  34. 34.
    Nakazawa, T. 1978. TOL plasmid in Pseudomonas aeruginosa PAO: thermosensitivity of self-maintenance and inhibition of host cell growth. J. Bacteriol. 133:527–535.PubMedGoogle Scholar
  35. 35.
    Nay, M. W., C. W. Randall, Jr., and P. H. King. 1974. Biological treatability of trinitrotoluene manufacturing waste-water. J. Water Pollut. Control Fed. 46:485–497.PubMedGoogle Scholar
  36. 36.
    Parrish, F. W. 1977. Fungal transformation of 2,4-dinitrotoluene and 2,4,6-trinitrotoluene. Appl. Environ. Microbiol. 34:232–233.PubMedGoogle Scholar
  37. 37.
    Pereira, W. E., D. L. Short, D. B. Manigold, and P. K. Roscio. 1979. Isolation and characterization of TNT and its metabolites in groundwater by gas chromoatograph-mass spectrometer-computer techniques. Bull. Environ. Contam. Toxicol. 21:554–562.PubMedCrossRefGoogle Scholar
  38. 38.
    Preuss, A., J. Fimpel, and G. Diekert. 1993. Anaerobic transformation of 2,4,6-trinitrotoluene (TNT). Arch. Microbiol. 159:345–353.PubMedCrossRefGoogle Scholar
  39. 39.
    Ramos, J. L., A. Stolz, W. Reineke, and K. N. Timmis. 1986. Altered effector specificities in regulators of gene expression: TOL plasmid xylS mutants and their use to engineer expansion of the range of aromatics degraded by bacteria. Proc. Nati. Acad. Sci. USA. 83:8467–8471.CrossRefGoogle Scholar
  40. 40.
    Ramos, J. L., and K. N. Timmis. 1987. Experimental evolution of catabolic pathways of bacteria. Microbiol. Sci. 4:228–237.PubMedGoogle Scholar
  41. 41.
    Ramos-González, M. L., E. Duque, and J. L. Ramos. 1991. Conjugational transfer of recombinant DNA in cultures and in soils: host range of Pseudomonas putida TOL plasmids. Appl. Environ. Microbiol. 57:3020–3027.PubMedGoogle Scholar
  42. 42.
    Reineke, W., and H.-J. Knackmuss. 1979. Construction of haloaromatics utilising bacteria. Nature 277:385–386.PubMedCrossRefGoogle Scholar
  43. 43.
    Robertson, J. B., J. C. Spain, J. D. Haddock, and D. T. Gibson. 1992. Oxidation of nitrotoluenes by toluene dioxygenase: evidence for a monooxygenase reaction. Appl. Environ. Microbiol. 58:2643–2648.PubMedGoogle Scholar
  44. 44.
    Rojo, F., D.H. Pieper, K.H. Engesser, H.-J. Knackmuss, and K.N. Timmis. 1987. Assemblage of ortho-cleavage routes for degradation of chloro-and methylaromatics. Science 238:1395–1398.PubMedCrossRefGoogle Scholar
  45. 45.
    Rhys-Williams, W., S. C. Taylor, and P. A. Williams. 1993. A novel pathway for catabolism of 4-nitrotoluene by Pseudomonas. J. Gen. Microbiol. 139:1967–1972.PubMedCrossRefGoogle Scholar
  46. 46.
    Senior, E., A. T. Bull, and J. M. Slater. 1976. Enzyme evolution in a microbial community growing on the herbicide dalapon. Nature 263:476–479.PubMedCrossRefGoogle Scholar
  47. 47.
    Shields, M. S., S. O. Montgomery, P. J. Chapman, S. M. Cuskey, and P. H. Pritchard. 1989. Novel pathway of toluene catabolism in the trichloroethylene-degrading bacterium G-4. Appl. Environ. Microbiol. 55:1624–1629.PubMedGoogle Scholar
  48. 48.
    Slater, J. M., and A. T. Bull. 1982. Environmental microbiology: biodegradation. Phil. Trans. R. Soc. London B. 297:575–597.CrossRefGoogle Scholar
  49. 49.
    Spain, J. C., and D. T. Gibson. 1991. Pathway for biodegradation of p-nitrophenol in a Moraxella sp. Appl. Environ. Microbiol. 57:812–819.PubMedGoogle Scholar
  50. 50.
    Spanggord, R. J., J. C. Spain, S. F. Nishino, and K. E. Mortelmans. 1991. Biodegradation of 2,4-dinitrotoluene by a Pseudomonas sp. Appl. Environ. Microbiol. 57:3200–3205.PubMedGoogle Scholar
  51. 51.
    Subba-Rao, R. V., and M. Alexander. 1985. Bacterial and fungal cometabolism of 1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane (DDT) and its breakdown products. Appl. Environ. Microbiol. 49:509–516.PubMedGoogle Scholar
  52. 52.
    Vorbeck, C., H. Lenke, P. Fischer, and H.-J. Knackmuss. 1994. Identification of a hydride-Meisenheimer complex as a metabolite of 2,4,6-trinitrotoluene by a Mycobacterium strain. J. Bacteriol. 176:932–934.PubMedGoogle Scholar
  53. 53.
    Whited, G. M., and D. T. Gibson. 1991. Toluene-4-monoxygenase, a three-component enzyme system that catalyzes the oxidation of toluene to p-cresol in Pseudomonas mendocina KR1. J. Bacteriol. 173:3010–3016.PubMedGoogle Scholar
  54. 54.
    Williams, R. T., P. S. Ziegenfuss, and W. E. Sisk. 1992. Composting of explosives and propellant contaminated soils under thermophilic and mesophilic conditions. J. Ind. Microbiol. 9:137–144.CrossRefGoogle Scholar
  55. 55.
    Worsey, M. I., and P. A. Williams. 1975. Metabolism of toluene and xylenes by Pseudomonas putida (arvilla) mt-2: evidence for a new function of the TOL plasmid. J. Bacteriol. 124:7–13.PubMedGoogle Scholar
  56. 56.
    Wright, A., and R. H. Olsen. 1994. Self-mobilization and organization of the genes encoding the toluene metabolic pathway of Pseudomonas mendocina KR1. Appl. Environ. Microbiol. 60:235–241.PubMedGoogle Scholar
  57. 57.
    Wubbolts, M. G. 1994. Xylene and alkane mono-oxygenases from Pseudomonas putida. Ph.D. dissertation. University of Groningen, Groningen, The Netherlands.Google Scholar
  58. 58.
    Zeyer, J., and P. C. Kearney. 1984. Degradation of o-nitrophenol and m-nitrophenol by a Pseudomonas putida. J. Agric. Food. Chem. 32:238–241.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Juan L. Ramos
    • 1
  • Alí Haïdour
    • 1
  • Asunción Delgado
    • 1
  • Estrella Duque
    • 1
  • María-Dolores Fandila
    • 1
  • Matilde Gil
    • 1
  • Guadalupe Piñar
    • 1
  1. 1.Department of Biochemistry and Molecular and Cellular Plant BiologyConsejo Superior de Investigaciones Científicas, Estación Experimental del ZaidínGranadaSpain

Personalised recommendations