Biochemistry of Zinc pp 131-148 | Cite as
Zinc and Cells
Abstract
Many studies have shown that zinc ions as an integral part of tissues and biologic fluids play an important role in homeostatic mechanisms regulating the reactivity of tissues and cells. In lymphocytes, zinc acts as a nonspecific mitogen (Chvapil, 1976). Within a range of 1.5 to 4.5 × 10−4 M Zn concentration in the culture medium, the blastogenic transformation of lymphocytes as well as their mitosis was significantly increased after 6 days in comparison with the effect of phytohemagglutinin (PHA). Zinc acted as a weak mitogen (Kirchner and Ruhl, 1970; Ruhl et al., 1974). Surprisingly, only zinc and mercury were stimulatory. Calcium and magnesium did not affect DNA synthesis in the culture system. Mn2+, Co2+, Cd2+, Cu2+, and Ni2+ at concentrations from 10−3 to 10−7 M were inhibitory. Inasmuch as DNA-synthesizing enzymes are zinc dependent, one may assume that enhanced mitosis of lymphocytes by zinc may be the result of increased activity of enzymes involved in cell mitosis.
Keywords
Mast Cell Sickle Cell Erythrocyte Membrane Human Erythrocyte Zinc DeficiencyPreview
Unable to display preview. Download preview PDF.
References
- Adams, K. F., Johnson, G., Jr., Hornowski, K., and Lineberger, T., 1979. The effect of copper on erythrocyte deformability: A possible mechanism of hemolysis in acute copper intoxication, Biochim. Biophys. Acta 550: 279.CrossRefGoogle Scholar
- Anderson, D. R., Davis, J. L., and Carraway, K. L., 1977. Calcium-promoted changes of the human erythrocyte membrane. Involvement of spectrin, transglutaminase and a membrane-bound protease, J. Biol. Chem. 252: 6617.Google Scholar
- Arnone, A., and Williams, D., 1977. The binding of zinc to human deoxyhemoglobin and its possible relevance to the anti-sickling effect of zinc, in Zinc Metabolism: Current Aspects in Health and Disease ( G. J. Brewer and A. S. Prasad, eds.), Liss, New York, p. 217.Google Scholar
- Avigad, L. S., and Bernheimer, A. W., 1976. Inhibition by zinc of hemolysis induced by bacterial and other cytolytic agents, Infect. Immun. 13: 1378.Google Scholar
- Avigad, L. S., and Bernheimer, A. W., 1978. Inhibition of hemolysis by zinc and its reversal by L-histidine, Infect. Immun. 19: 1101.Google Scholar
- Bannister, J., Bannister, W., and Wood, E., 1971. Bovine erythrocyte cupro-zinc protein. 1. Isolation and several characterizations, Eur. J. Biochem. 18: 178.CrossRefGoogle Scholar
- Bertles, J. F., Rabinowitz, R., and Dobler, J., 1970. Hemoglobin interaction modification of solid phase composition in the sickling phenomenon, Science 169: 375.CrossRefGoogle Scholar
- Bettger, W. J., Fish, T. J., and O’Dell, B. L., 1978. Effects of copper and zinc status of rats on erythrocyte stability and superoxide dismutase activity, Proc. Soc. Exp. Biol. Med. 158: 279.Google Scholar
- Boyle, M. D. P., Langone, J. J., and Borsos, T., 1979. Studies on the terminal stages of immune hemolysis, J. Immunol. 122:1209.Google Scholar
- Bray, T., and Bettger, W. J., 1990. The physiological role of zinc as an antioxidant, Free Radical Biol. Med. 8: 281.CrossRefGoogle Scholar
- Brewer, G. J., 1980a. Calmodulin, zinc, and calcium in cellular and membrane regulation, Am. J. Hematol. 8: 231.CrossRefGoogle Scholar
- Brewer, G. J., 1980b. Zinc and copper in hematology, in Zinc and Copper in Medicine ( Z. A. Karcioglu and R. M. Sarper, eds.), Thomas, Springfield, Ill., p. 347.Google Scholar
- Brewer, G. J., and Bereza, U. L., 1982. Therapy of sickle cell anemia with membrane expander/ calmodulin inhibitor classes of drugs, in Clinical, Biochemical, and Nutritional Aspects of Trace Elements ( A. S. Prasad, ed.), Liss, New York, p. 211.Google Scholar
- Brewer, G. J., and Oelshlegel, F. J., Jr., 1974. Anti-sickling effect of zinc, Biochem. Biophvs. Res. Commun. 58: 854.CrossRefGoogle Scholar
- Brewer, G. J., Aster, J. C., Knutsen, C. A., and Kruckberg, W. C., I979a. Zinc inhibition of calmodulin: A proposed molecular mechanism of zinc action on cellular functions, Am. J. Hematol. 7: 53.Google Scholar
- Brewer, G. J., Brewer, L. F., and Prasad, A. S., 1979b. Suppression of irreversibly sickled erythrocytes by zinc therapy in sickle cell anemia, J. Lab. Clin. Med. 90: 549.Google Scholar
- Burke, J. P., and Fenton, M. R., 1985. Effect of zinc deficient diet on lipid peroxidation in liver and tumor subcellular membranes, Proc. Soc. Exp. Biol. Med. 179: 187.Google Scholar
- Castranova, Y., and Miles, P. R., 1977. The effect of zinc and other metals on the stability of lysosomes, J. Membr. Biol. 33: 263.CrossRefGoogle Scholar
- Chvapil, M., 1973. New aspects in the biological role of zinc: A stabilizer of macromolecules and biological membranes, Life Sci. 13: 1041.CrossRefGoogle Scholar
- Chvapil, M., 1976. Effect of zinc on cells and biomembranes, Med. Clin. North Am. 60 (4): 799Google Scholar
- Chvapil, M., Ryan, J. N., and Zukoski, C. F., 1972. The effect of zinc and other metals on the stability of lysosomes, Proc. Soc. Exp. Biol. Med. 140: 642.Google Scholar
- Chvapil, M., Zukoski, C. F., Hattler, B. G., Stankova, L., Montgomery, D., Carlson, E. C., and Ludwig, J. C., 1974. Zinc and cells, in Trace Elements in Human Health and Disease ( A. S. Prasad, ed.), Academic Press, New York, p. 269.Google Scholar
- Chvapil, M., Weldy, P. L., Stankova, L., Clark, D. S., and Zukoski, C. F., 1975a. Inhibitory effect of zinc ions on platelet aggregation and serotonin release reaction, Life Sci. 16: 561.CrossRefGoogle Scholar
- Chvapil, M., Ludwig, J. C., Sipes, G., and Halladay, S. C., 1975b. Inhibition of NADPH oxidation and oxidative metabolism of drugs in liver microsomes by zinc, Biochem. Pharmacol. 24: 1.CrossRefGoogle Scholar
- Chvapil, M., Ludwig, J. C., Sipes, G., and Misiorowski, R., 1975e. Inhibition of NADPH oxidation and related drug oxidation in liver microsomes by zinc, Biochem. Pharmacol. 25: 1787.CrossRefGoogle Scholar
- Chvapil, M., Montgomery, D., Ludwig, J. C., and Zukoski, C., 1979. Zinc in erythrocyte ghosts, Proc. Soc. Exp. Biol. Med. 162:480.Google Scholar
- Coppen, D. E., Richardson, D. E., and Cousins, R. J., 1988. Zinc suppression of free radicals induced in cultures of rat hepatocytes by iron, t-butyl hydroperoxide, and 3 methylindole, Proc. Soc. Exp. Biol. Med. 189: 100.Google Scholar
- Dash, S., Brewer, G. J., and Oelshlegel, F. J., Jr., 1974. Effect of zinc on haemoglobin binding by red cell membranes, Nature 250: 251.CrossRefGoogle Scholar
- Dobler, J., and Bertles, J. F., 1968. The physical state of hemoglobin in sickle cell anemia erythrocytes in vivo, J. Exp. Med. 127: 711.CrossRefGoogle Scholar
- Dunn, M. F., 1974. Red blood cell calcium and magnesium: Effects upon sodium and potassium transport and cellular morphology, Biochim. Biophys. Acta 352: 97.CrossRefGoogle Scholar
- Eaton, J. W., Berger, E., White, J. G., and Jacob, H. S., 1977. Metabolic and morphologic effect of intraerythrocyte calcium: Implications for the pathogenesis of sickle cell disease, in Metabolism: Current Aspects in Health and Disease ( G. J. Brewer and A. S. Prasad, eds.), Liss, New York, p. 275.Google Scholar
- Fernandez, M. A., and O’Dell, B. L., 1983. Effect of zinc deficiency on plasma glutathione in the rat, Proc. Soc. Exp. Biol. Med. 173: 564.Google Scholar
- Finch, J. T., Perutz, M. J., Bertles, J. F., and Dobler, J., 1973. Structure of sickle erythrocyte and of sickle-cell hemoglobin fibers, Proc. Natl. Acad. Sci. USA 70: 718.CrossRefGoogle Scholar
- Gilman, J. G., and Brewer, G. J., 1978. The oxygen-linked binding site of human haemoglobin, Biochem. J. 169: 625.Google Scholar
- Girotti, A. W., Thomas, J. P., and Jordon, J. E., 1985. Inhibitory effect of zinc on free radical lipid peroxidation in erythrocyte membranes, J. Free Radicals Biol. Med. 1: 395.CrossRefGoogle Scholar
- Harris, G. L. A., Cove, D. H., and Crawford, N., 1974. Effect of divalent cations and chelating agents on the ATPase activity of platelet contractile protein, “thrombosthenin,” Biochem. Med. 11: 10.CrossRefGoogle Scholar
- Hidalgo, J., Campmany, L., Borras, M., Garvey, J. S., and Armario, A., 1988. Metallothionein response to stress in rats, Am. J. Physiol. 255: E518.Google Scholar
- Hogberg, B., and Uvnas, B., 1960. Further observations on the disruption of rat mesentery mast cells caused by compound 48/80, antigen-antibody reaction, lethciinase A and decylamine, Acta Physiol. Scand. 48: 133.CrossRefGoogle Scholar
- Jeffrey, E. H., 1983. The effect of zinc on NADPH oxidation and monooxygenase activity in rat hepatic microsome, Cell Pharmacol. 23: 467.Google Scholar
- Kabat, I. A., Niewworok, J., and Blaszcyk, J., 1978. Der einfluss von zinkionen auf ausgewahlte osmo tische parameter zentralbl bakteriol, Zentralbl. Bakteriol. Parasitenkd. Infektionskr. Hyg. Abt. I Orig. B 166: 375.Google Scholar
- Karl, L., Chvapil, M., and Zukoski, C. F., 1973. Effect of zinc on the viability and phagocytic capacity of peritoneal macrophages, Proc. Soc. Exp. Biol. Med. 142: 1123.Google Scholar
- Kazimierczak, W., and Maslinski, C., 1974. The mechanism of the inhibitory action of zinc on histamine release from mast cells by compound 48/80, Agents Actions 4: 203.CrossRefGoogle Scholar
- Kirchner, H., and Ruhl, H., 1970. Stimulation of human peripheral lymphocytes by Zn’ in vitro, Exp. Cell Res. 61.229.Google Scholar
- Kruckberg, W. C., and Brewer, G. J., 1978. The mechanism and control of human erythrocyte zinc uptake, Med. Biol. 56: 5.Google Scholar
- Kruckberg, W., Knutsen, C. A., and Brewer, G. J., 1977. Mechanisms of red cell zinc uptake with a note on zinc and red cell metabolism, in Zinc Metabolism: Current Aspects in Health and Disease ( C. J. Brewer and A. S. Prasad, eds.), Liss, New York, p. 259.Google Scholar
- Kubow, S., Janzen, E. G., and Bray, T. M., 1984. Spin-trapping of free radicals formed during in vitro and in vivo metabolism of 3-methylindole, J. Biol. Chem. 259: 4447.Google Scholar
- McCord, J. M., and Fridovich, I., 1969. Superoxide dismutase. An enzyme function for erythrocuprein (hemocuprein), J. Biol. Chem. 244: 6049.Google Scholar
- McCord, J. M., Keele, B. B., Jr., and Fridovich, I., 1971. An enzyme-based theory of obligate anaerobiosis: The physiological function of superoxide dismutase, Proc. Natl. Acad. Sci. USA 68: 1024.CrossRefGoogle Scholar
- McLaughlin, A., Greatwohl, C., and McLaughlin, S., 1978. The absorption of divalent cations to phosphatidylcholine bilayer membranes, Biochim. Biophys. Acta 513: 2778.Google Scholar
- Montgomery, D. W., Don, L. K., Zukoski, C. F., and Chvapil, M., 1974. The effect of zinc and other metals on complement hemolysis of sheep red blood cell in vitro, Proc. Soc. Exp. Biol. Med. 145: 263.Google Scholar
- Oelshlegel, F. J., Jr., Brewer, G. J., Prasad, A. S., Knutsen, C., and Schoomaker, E. B., 1973. Effect of zinc on increasing oxygen affinity of sickle and normal red blood cells, Biochem. Biophys. Res. Commun. 53: 560.CrossRefGoogle Scholar
- Oelshlegel, F. J., Jr., Brewer, G. J., Knutsen, C., Prasad, A. S., and Schoomaker, E. B., 1974. Studies on the interaction of zinc with human hemoglobin, Arch. Biochem. Biophys. 163: 742.CrossRefGoogle Scholar
- Palek, J., Curby, W. A., and Lionetti, F. J., 1971. Effect of calcium and adenosine triphosphate on volume of human red cell ghosts, Am. J. Physiol. 220: 19.Google Scholar
- Passow, H., 1970. The use of pharmacological doses of zinc in the treatment of sickle cell anemia, in Effect of Metals on Cells, Subcellular Elements and Macromolecules ( G. J. Brewer and A. S. Prasad, eds.), Thomas, Springfield, Ill., p. 291.Google Scholar
- Peterson, D. A., Gerrand, G. M., Peller, J., Rao, G. H. R., and White, J. C., 1981. Interactions of zinc and arachidonic acid, Prostaglandins Med. 6: 91.CrossRefGoogle Scholar
- Phillips, J. L., and Azari, P., 1974. Enhancement of nucleic acid synthesis in phytohemagglutininstimulated human lymphocytes, Cell. Immunol. 10: 31.CrossRefGoogle Scholar
- Pilz, R. B., Willis, R. C., and Seegmiller, J. E., 1982. Regulation of human lymphoblast plasma membrane 5’-nucleotidase by zinc, J. Biol. Chem. 257: 13544.Google Scholar
- Prasad, A S, Abbasi, A., and Ortega, J., 1977. Zinc deficiency in man: Studies in sickle cell disease, in Current Aspects in Health and Disease ( G. J. Brewer and A. S. Prasad, eds.), Liss, New York, p. 211.Google Scholar
- Prasad, A. S., Brewer, G. J., Schoomaker, E. B., and Rabbani, P., 1978. Hypocupremia induced by zinc therapy in adults, J. Am. Med. Assoc. 240: 2166.CrossRefGoogle Scholar
- Rabenstein, D. L., and Isab, A. A., 1980. The complexation of zinc in intact human erythrocytes studied by Ih spin-echo NMR, FEBS Lett. 221: 6.Google Scholar
- Rifkind, J. M., 1983. Interaction of zinc with erythrocytes, in Metal Ions in Biological Systems, Vol. 15 ( H. Sigel, ed.), Dekker, New York, p. 275.Google Scholar
- Rifkind, J. R., and Heim, J. M., 1977. Interaction of zinc and hemoglobin: Binding of zinc and the oxygen affinity, Biochemistry 16: 4438.CrossRefGoogle Scholar
- Ruhl, H., Kirchner, H., and Bochert, G., 1974. Kinetics of the Zn’ stimulation of human peripheral lymphocytes in vitro, Proc. Soc. Exp. Biol. Med. 137: 1089.Google Scholar
- Schmetterer, G., 1978. ATP dependent uptake of zinc by human erythrocyte ghosts, Z. Naturfrbrsch. 33: 210.Google Scholar
- Settlemire, C. T., and Matrone, G., 1967. In vivo interference of zinc with ferritin iron in the rat, J. Nutr. 92: 1959.Google Scholar
- Szeberi, S., Eskelson, C. D., and Chvapil, M., 1988. The effect of zinc on iron-induced lipid peroxidation in different lipid systems including liposome and micelles, Physiol. Chem. Phys. Med. NMR 20: 205.Google Scholar
- Takeda, Y., Ogiso, Y., and Miwatani, T., 1977. Effect of zinc ion on the hemolytic activity of thermostable direct hemolysin from Vibrio parahaemolyticus streptolysin O, and Triton X100, Infect. Immun. 17: 239.Google Scholar
- Torrubia, J. O. A., and Garay, R., 1989. Evidence for a major route for zinc uptake in human red blood cells: (Zn(HCO3)2C1)- influx through the (Cl-/HCO3) anion exchanger, J. Cell. Physiol. 138: 316.CrossRefGoogle Scholar
- Tsukamoto, T., Yoshinaga, T., and Sano, S., 1979. The role of zinc with special reference to the essential thiol groups in 8-aminolevulinic acid dehydratase of bovine liver, Biochim. Biophys. Acta 570: 167.CrossRefGoogle Scholar
- Warren, L., Glick, M. C., and Nass, M. K., 1966. Membranes of animal cells I. Method of isolation of the surface membrane, J. Cell. Physiol. 68: 269.CrossRefGoogle Scholar
- Weed, R. I., LaCelle, P. L., and Merrill, E. W., 1969. Metabolic dependence of red cell deformability, J. Clin. Invest. 48: 795.CrossRefGoogle Scholar
- Weismann, K., and Mikkelsen, H. I., 1980. Osmotic lysis of erythrocytes in relation to the zinc concentration of the medium, Arch. Dermatol. Res. 269: 105.CrossRefGoogle Scholar
- White, J. G., 1974. Effects of ionophore, A23187, on the surface morphology of normal erythrocytes, Am. J. Pathol. 77: 507.Google Scholar
- White, J. G., 1976. Scanning electron microscopy of erythrocyte deformation: The influence of a calcium ionophore, A23187, Semin. Hematol. 13: 121.Google Scholar
- Williams, R. O., and Loeb, L. A., 1973. Zinc requirement for DNA replication in stimulated human lymphocytes, J. Cell Biol. 58: 594.CrossRefGoogle Scholar
- Wills, E. D., 1965. Mechanism of lipid peroxide formation in tissues. Role of metals and haematin proteins in the catalysis of the oxidation of unsaturated fatty acids, Biochim. Biophys. Acta 98: 238.CrossRefGoogle Scholar
- Wright, C. E., Gaull, G. E., and Pasentes-Morales, H., 1984. Protective effects of taurine, zinc and vitamin E on human cell membranes: Possible relevance to retina, J. Am. Coll. Nutr. 3: 248.Google Scholar
- Yamamoto, K., and Takahashi, M., 1975. Inhibition of the terminal stage of complement-mediated lysis (reactive lysis) by zinc and copper ions, Int. Arch. Allergy Appl. Immunol. 48: 653.CrossRefGoogle Scholar