Zinc and Enzymes

  • Ananda S. Prasad
Part of the Biochemistry of the Elements book series (BOTE, volume 11)

Abstract

Zinc metalloenzymes catalyze approximately 50 important biochemical reactions. Many of these enzymes have been isolated from more than one species, resulting in identification of over 200 catalytically active zinc metalloproteins (Galdes and Vallee, 1983).

Keywords

Zinc Deficiency Zinc Supplementation Plasma Ammonia Carbamoyl Phosphate Synthetase Acrodermatitis Enteropathica 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ballester, O. F., and Prasad, A. S., 1983. Anergy, zinc deficiency, and decreased nucleoside phosphorylase activity in patients with sickle ceP! anemia, Ann. Intern. Med. 98: 180.Google Scholar
  2. Boss, G. R., Thompson, L. F., Spiegelberg, H. L., Pichler, W. J., and Seegmiller, J. E., 1980. Age dependency of lymphocyte ecto 5’ nucleotidase activity, J. Immunol. 125: 679.Google Scholar
  3. Boyd, E., 1932. The weight of the thymus gland in health and disease, Am. J. Dis. Child. 43: 1162.Google Scholar
  4. Brody, M. S., Steinberg, J. R., Svinger, B. A., and Luecke, R. E., 1977. Increased purine nucleotide cycle activity associated with dietary zinc deficiency, Biochem. Biophys. Res. Commun. 78: 144.CrossRefGoogle Scholar
  5. Brown, R. S., Huguet, J., and Curtiss, N. S., 1983. Models for Zn (II)-binding sites in enzymes, in Metal Ions in Biological Systems ( H. Sigel, ed.), Dekker, New York, p. 55.Google Scholar
  6. Brummerstedt, E., Flagstad, T., Basse, A., and Andersen, E., 1971. The effect of zinc on calves with hereditary thymus hypoplasia (lethal trait A-46), Acta Pathol. Microbiol. Scand. Sect. A 79: 686.Google Scholar
  7. Burch, R., Williams, R., Hahn, H., Jetton, M., and Sullivan, J., 1975. Serum and tissue enzyme activity and trace element content in response to zinc deficiency in the pig, Clin. Chem. 21: Am. Assn. Clin. Chemists, Washington, D.C., 568.Google Scholar
  8. Chandra, R. K., 1980. Single nutrient-deficiency and cell-mediated immune response. I. Zinc, Am. J. Clin. Nutr. 33: 736.Google Scholar
  9. Cheung, C. W., and Raijman, L., 1980. The regulation of carbamoyl phosphate synthetase (ammonia) in rat liver mitochondria, J. Biol. Chem. 255: 5051.Google Scholar
  10. Cohen, A., Gudas, L. J., Ammann, A. J., Staal, G. E. J., and Martin, D. W., Jr., 1978. Deoxyguanosine triphosphate as a possible toxic metabolite in the immune deficiency associated with purine nucleoside phosphorylase deficiency, J. Clin. Invest. 61: 1405.CrossRefGoogle Scholar
  11. Coleman, R. F., and Foster, D. S., 1970. The absence of zinc in bovine liver glutamate dehydrogenase, J. Biol. Chem. 245: 6190.Google Scholar
  12. Cossack, Z. T., and Prasad, A. S., 1987. Hyperammonemia in zinc deficiency: Activities of urea cycle related enzymes, Nutr. Res. 7: 1161.CrossRefGoogle Scholar
  13. Cossack, Z. T., Prasad, A. S., and Koniuch, D., 1982. Effect of zinc supplementation on retinal reductase in zinc deficient rats, Nutr. Rep. Int. 26: 841.Google Scholar
  14. Dreosti, I. E., Buckley, R. A., and Record, I. R., 1986. The teratogenic effect of zinc deficiency and accompanying feeding patterns in mice, Nutr. Res. 6: 159.CrossRefGoogle Scholar
  15. Duncan, J. R., 1984. Aspartate transcarbamylase from regenerating rat liver-A zinc activated enzyme, Nutr. Res. 4: 93.CrossRefGoogle Scholar
  16. Einarsdottir, O., and Caughey, W. S., 1984. Zinc is a constituent of bovine heart cytochrome c oxidase preparations, Biochem. Biophys. Res. Commun. 124: 836.CrossRefGoogle Scholar
  17. Endre, L., Katona, Z., and Gycitkovits, K., 1975. Zinc deficiency and cellular immune deficiency in acrodermatitis enteropathica, Lancet 1: 1196.CrossRefGoogle Scholar
  18. Fernandez-Madrid, F., Prasad, A. S., and Oberleas, D., 1973. Effect of zinc deficiency on nucleic acids, collagen, and non-collagenous protein of the connective tissue, J. Lab. Clin. Med. 82: 951.Google Scholar
  19. Finelli, V. N., Klauder, D. S., Karaffz, M. A., and Petering, H. G., 1975. Interaction of zinc and lead on h-aminolevulinate dehydratase, Biochem. Biophys. Res. Commun. 65: 303.CrossRefGoogle Scholar
  20. Fraker, P. J., Haas, S. M., and Leucke, R. W., 1977. Effect of zinc deficiency on the immune response of the young adult ALT mouse, J. Nutr. 107: 1889.Google Scholar
  21. Fraker, P. J., DePasquale-Jardieu, P., Zwickl, C. M., and Luecke, R. W., 1978. Regeneration of T-cell helper function in zinc deficient adult mice, Proc. Natl. Acad. Sci. USA 75: 5660.CrossRefGoogle Scholar
  22. Frost, P., Rabbani, P., Smith, J., and Prasad, A. S., 1977. The effect of zinc deficiency on the immune response, in Zinc Metabolism: Current Aspects in Health and Disease ( G. J. Brewer and A. S. Prasad, eds.), Liss, New York, p. 143.Google Scholar
  23. Frost, P., Rabbani, P., Smith, J., and Prasad, A. S., 1981. Cell mediated cytotoxicity and tumor growth in zinc deficient mice, Proc. Soc. Exp. Biol. Med. 167: 333.Google Scholar
  24. Galdes, A., and Vallee, B. L., 1983. Categories of zinc metalloenzymes, in Metal Ions in Biological Systems ( H. Sigel, ed.), Dekker, New York, p. 1.Google Scholar
  25. Gibbs, P. N. B., Gore, M. G., and Jorand, P. M., 1985. Investigation of the effect of metal ions on the reactivity of thiol groups in human 5-aminolevulinate dehydratate, Biochem. J. 255: 573.Google Scholar
  26. Giblett, E. R., Anderson, J. E., Cohen, F., Pollara, B., and Meuwissen, H. J., 1972. Adenosine deaminase deficiency in two patients with severely impaired cellular immunity, Lancet 2: 1067.CrossRefGoogle Scholar
  27. Giblett, E. R., Ammann, A. J., Wara, D. W., Sandman, R., and Diamond, L. K., 1975. Nucleoside phosphorylase deficiency in a child with severely defective T-cell immunity and normal B-cell immunity, Lancet 1: 1010.CrossRefGoogle Scholar
  28. Good, R. A., and Fernandes, G., 1979. Nutrition, immunity, and cancer-A review, Clin. Bull. 9: 3.Google Scholar
  29. Goriki, K., Wada, K., Hata, J., Kobayashi, M., Hirabayashi, A., Shigemoto, K., Hamaguchi, N., Yorioka, N., and Yamakido, M., 1982. The relationship between carbonic anhydrases and zinc concentration of erythrocytes in patients under chronic hemodialysis, Hiroshima J. Med. Sci. 2: 31.Google Scholar
  30. Hirschorn, R., Vawter, G. F., Kirkpatrick, J. A., and Rosen, F. S., 1979. Adenosine deaminase deficiency: Frequency and comparative pathology in autosomally recessive severe combined immunodeficiency, Clin. Immunol. Immunopathol. 14: 107.CrossRefGoogle Scholar
  31. Hsu, J. M., Anilane, J. K., and Scanlan, D. E., 1966. Pancreatic carboxypeptidase: Activities in zinc deficient rats, Science 153: 882.CrossRefGoogle Scholar
  32. Iqbal, M., 1971. Activity of alkaline phosphatase and carbonic anhydrase in male and female zinc deficient rats, Enzyme 12: 33.Google Scholar
  33. lqbal, M., and Ottaway, J. H., 1970. Glutamine synthetase in muscle and kidney, Biochem. J. 119: 145.Google Scholar
  34. Kay, M. M. B., 1979. An overview of immune aging, Mech. Ageing Dev. 9: 39.CrossRefGoogle Scholar
  35. Keilin, D., and Mann, T., 1940. Carbonic anhydrase. Purification and nature of the enzyme, Biochem. J. 34: 1163.Google Scholar
  36. Kelly, R. E., Malty, M. J., and Evans, D. R., 1986. The dihydrooxatase domain of the multifunction protein GAD, J. Biot. Chem. 261: 6073.Google Scholar
  37. Kfoury, G., Reinhold, J., and Simonian, S. J., 1968. Enzyme activities in tissues of zinc-deficient rats, J. Nutr. 95: 102.Google Scholar
  38. Kirchgessner, M., Roth, H. P., and Weigand, E., 1976. Biochemical changes in zinc deficiency, in Trace Elements in Human Health and Disease, Volume I ( A. S. Prasad, ed.), Academic Press, New York, p. 189.Google Scholar
  39. Lieberman, I., Abrams, R., Hunt, N., and Ove, P., 1963. Levels of enzyme activity and deoxyribonucleic acid synthesis in mammalian cells cultured from the animal, J. Biol. Chem. 238: 3955.Google Scholar
  40. Lockett, C. J., Reyes, A. J., Leary, W. P., Alcocer, L., and Olhaberry, J. V., 1983. Zinc, angiotensin I-converting enzyme and hypertension, S. Air. Med. J. 64: 1022.Google Scholar
  41. Lund, P. A., 1970. A radiochemical assay for glutamine synthetase and activity of the enzyme in rat tissues, Biochem. J. 118: 35.Google Scholar
  42. Meister, A., 1974. Glutamine synthesis, in The Enzymes Boyer P. D. ed.), Academic Press, New York, p. 443.Google Scholar
  43. Meuwissen, H. J., and Pollara, B., 1978. Combined immunodeficiency and inborn errors of purine metabolism, Blut 37: 173.CrossRefGoogle Scholar
  44. Mitchell, B. S., and Kelly, W. N., 1980. Purinogenic immunodeficiency disease: Clinical features and molecular mechanisms, Ann. Intern. Med. 92: 826.Google Scholar
  45. Ohtake, Y., Uchida, K., and Sakai, T., 1963. Purification and properties of ribonuclease for yeast, J. Biochem. 54: 322.Google Scholar
  46. Oleske, J. M., Westphal, M. L., Shore, S., Gorden, D., Bogden, J. D., and Nahmias, A., 1979. Zinc therapy of depressed cellular immunity in acrodermatitis enteropathica, Am. J. Dis. Child. 133: 915.Google Scholar
  47. Pekarek, R. S., Sandstead, H. H., Jacob, R. A., and Barcome, D. F., 1979. Abnormal cellular immune responses during acquired zinc deficiency, Am. J. Clin. Nutr. 32: 1466.Google Scholar
  48. Pilz, R. B., Willis, R. C., and Seegmiller, J. E., 1982. Regulation of human lymphoblast plasma membrane 5’ nucleotidase by zinc, J. Biot. Chem. 257: 13544.Google Scholar
  49. Prasad, A. S., 1982. Clinical and biochemical spectrum of zinc deficiency in human subjects, in Clinical, Biochemical and Nutritional Aspects of Trace Elements ( A. S. Prasad, ed), Liss, New York, p. 4.Google Scholar
  50. Prasad, A S, 1988. Clinical spectrum and diagnostic aspects of human zinc deficiency, in Essential and Toxic Trace Elements in Human Health and Disease ( A. S. Prasad, ed.), Liss, New York, p. 3.Google Scholar
  51. Prasad, A. S., and Oberleas, D., 1971. Changes in activities of zinc-dependent enzymes in zinc deficient tissues of rats, J. Appl. Physiol. 31 (6): 842.Google Scholar
  52. Prasad, A S., and Oberleas, D., 1973. Ribonuclease and deoxyribonuclease activities in zinc-deficient tissues, J. Lab. Clin. Med. 82: 461.Google Scholar
  53. Prasad, A. S., and Oberleas, D., 1974. Thymidine kinase activity and incorporation of thymidine into DNA in zinc-deficient tissue, J. Lab. Clin. Med. 83: 634.Google Scholar
  54. Prasad, A. S., and Rabbani, P., 1981. Nucleoside phosphorylase in zinc deficiency, Trans. Assoc. Am. Physicians 94: 314.Google Scholar
  55. Prasad, A S, Halsted, J. A., and Nadimi, M., 1961. Syndrome of iron deficiency anemia, he patosplenomegaly, hypogonadism, dwarfism, and geophagia, Am. J. Med. 31: 532.CrossRefGoogle Scholar
  56. Prasad, A S, Miale, A., Farid, Z., Schulert, A., and Sandstead, H. H., 1963. Zinc metabolism in patients with the syndrome of iron deficiency anemia, hypogonadism and dwarfism, J. Lab. Clin. Med. 61: 537.Google Scholar
  57. Prasad, A. S., Oberleas, D., Wolf, P., and Horwitz, J. P., 1967. Studies on zinc deficiency: Changes in trace elements and enzyme activities in tissues of zinc deficient rats, J. Clin. Invest. 46: 549.Google Scholar
  58. Prasad, A. S., Oberleas, D., Wolf, P., Horwitz, J. P., Miller, E. R., and Luecke, R. W., 1969. Changes in trace elements and enzyme activities in tissues of zinc deficient pigs, Am. J. Clin. Nutr. 22: 628.Google Scholar
  59. Prasad, A. S., Oberleas, D., Miller, E. R., and Luecke, R. W., 1971. Biochemical effects of zinc deficiency: Changes in activities of zinc-dependent enzymes and ribonucleic acid and deoxyribonucleic acid content of tissues, J. Lab. Clin. Med. 77: 144.Google Scholar
  60. Prasad, A. S., Schoomaker, E. B., Ortega, J., Brewer, G. J., Oberleas, D., and Oelschlegel, F. J., 1975. Zinc deficiency and sickle cell disease, Clin. Chem. Washington, D.C. 21: 582.Google Scholar
  61. Prasad, A. S., Rabbani, P., Abbasi, A., Bowersox, E., and Fox, M. R. S., 1978. Experimental zinc deficiency in humans, Ann. Intern. Med. 89: 483.Google Scholar
  62. Prasad, A. S., Fernandez-Madrid, F., and Ryan, J. F., 1979. Deoxythymidine kinase activity of human implanted sponge connective tissue in zinc deficiency, Am. J. Physiol. 236: E272.Google Scholar
  63. Rabbani, P., and Prasad, A. S., 1978. Plasma ammonia and liver ornithine transcarbamoylase activity in zinc deficient rats, Am. J. Physiol. 235: E203.Google Scholar
  64. Rahmatullah, M., Louise, Y., Fong, L., and Boyde, T., 1980. Zinc-deficiency and activities of urea cycle-related enzymes in rats, Experientia 36: 1281.CrossRefGoogle Scholar
  65. Raijman, L., and Jones, M. E., 1976. Purification, composition and some properties of rat liver carbamoyl phosphate synthetase (ammonia), Arch. Biochem. Biophys. 175: 270.CrossRefGoogle Scholar
  66. Ross, P. K., Noordewier, B., Hook, J. B., and Bond, J. T., 1982. Zinc deficiency and the kidney, Miner. Electrolyte Met a b. 7: 257.Google Scholar
  67. Roth, H. P., and Kirchgessner, M., 1974. Zur Aktivital der Blut-Carboanhydrase bei Zn-Mangel waschsender Ratten, Z. Tierphysiol. Tierernaehr. Futtermittelkd. 32: 296.CrossRefGoogle Scholar
  68. Somers, M., and Underwood, E. J., 1969. Ribonuclease activity of nucleic acid and protein metabolism in the testes of zinc deficient rats, Aust. J. Biol. Sci. 22: 1277.Google Scholar
  69. Speckhard, D. C., Wu, F. Y. H., and Wu, C. W., 1977. Role of the intrinsic metal in RNA polymerase from Escherichia coli. In vivo substitution of tightly bound zinc with cobalt, Biochemistry 16: 5228.Google Scholar
  70. Stoop, J. W., Zegers, B. J. M., Hendrickx, G. F. M., Van Heukelom, L. H. S., Staal, G. E. J., de Bree, P. K., Wadman, S. K., and Ballieux, R. E., 1977. Purine nucleoside phosphorylase deficiency associated with selective cellular immunodeficiency, N. Engl. J. Med. 296: 651.CrossRefGoogle Scholar
  71. Terhune, M. W., and Sandstead, H. H., 1972. Decreased RNA polymerase activity in mammalian zinc deficiency, Science 177: 68.CrossRefGoogle Scholar
  72. Tsukamoto, I. Yoshinaga, T., and Sanos, S., 1980. Zinc and cysteine residues in the active site of bovine liver delta-aminolevulinic acid dehydratase, Int. J. Biochem. 12:751.Google Scholar
  73. Vallee, B. L., 1959. Biochemistry, physiology and pathology of zinc, Physiol. Rev. 39: 443.Google Scholar
  74. Vallee, B. L., and Williams, R. J. P., 1968. Metalloenzymes: The entatic nature of their active sites, Proc. Natl. Acad. Sci. USA 59: 498.CrossRefGoogle Scholar
  75. Washabaugh, M. W., and Collins, K. D., 1986. Dihydrooratase from Escherichia coli. Sulphydroxyl group-metal interactions, J. Biol. Chem. 261: 5920.Google Scholar
  76. White, A., Handler, P., and Smith, E., 1973. Metabolism of ammonia, in Principles of Biochemistry, 5th ed., McGraw-Hill, New York, p. 645.Google Scholar
  77. Wu, F. Y., and Wu, C., 1983. The role of zinc in DNA and RNA polymerase, in Metal Ions in Biological Systems ( H. Sigel, ed.), Dekker, New York, p. 157.Google Scholar
  78. Yoshino, M., Murakami, K., and Tusushima, K., 1978. Inhibition of AMP deaminase by zinc ions, Biochem. Pharmacol. 27: 2651.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Ananda S. Prasad
    • 1
    • 2
    • 3
  1. 1.Department of Medicine, Division of Hematology and OncologyWayne State University School of MedicineUSA
  2. 2.Harper HospitalDetroitUSA
  3. 3.Veterans Administration Medical CenterAllen ParkUSA

Personalised recommendations