Cornea

  • Elaine R. Berman
Part of the Perspectives in Vision Research book series (PIVR)

Abstract

The cornea is composed of five distinct anatomic layers lying parallel to its surfaces: (1) an outermost epithelial layer that comprises about 8–10% of the total thickness; (2) the basal lamina (basement membrane) underlying the epithelium; (3) the stroma, which comprises about 90% of the total thickness; (4) Descemet’s membrane; and (5) the innermost endothelium, a single layer of cells that accounts for about 1% of the total thickness. Being an avascular tissue, the nutritional needs of the cornea are met by the tear film (the source of atmospheric oxygen) and the aqueous humor (the major source of glucose) (Stanifer et al., 1983; Maurice, 1984; Friend, 1987).

Keywords

Plasminogen Activator Corneal Epithelium Keratan Sulfate Corneal Endothelium Corneal Epithelial Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abraham, N. G., Lin, J. H.-C., Dunn, M. W., and Schwartzman, M. L., 1987, Presence of heure oxygenase and NADPH cytochrome P-450 (c) reductase in human corneal epithelium, Invest. Ophthalmol. Vis. Sci. 28: 1464–1472.PubMedGoogle Scholar
  2. Akhtar, R. A., 1987, Effects of norepinephrine and 5-hydroxytryptamine on phosphoinositide-PO4 turnover in rabbit cornea, Exp. Eye Res. 44: 849–862.PubMedCrossRefGoogle Scholar
  3. Akhtar, R. A., 1988, Guanosine 5’-O-thiotriphosphate and NaF stimulation of phosphatidylinositol 4,5bisphosphate hydrolysis in bovine corneal epithelium, Curr. Eye Res. 7: 487–496.PubMedCrossRefGoogle Scholar
  4. Alexander, R. J., Silverman, B., and Henley, W. L., 1981, Isolation and characterization of BCP 54, the major soluble protein of bovine cornea, Exp. Eye Res. 32: 205–216.PubMedCrossRefGoogle Scholar
  5. Alper, R., 1982/1983, Isolation and preliminary characterization of a structural glycoprotein complex from bovine corneal stroma, Curr. Eye Res. 2: 479–487.Google Scholar
  6. Alper, R., 1988, The bovine corneal SGP-complex is related to the tissue form of type VI collagen, Curr. Eye Res. 7: 31–42.PubMedCrossRefGoogle Scholar
  7. Alvarado, J., Murphy, C., and Juster, R., 1983, Age-related changes in the basement membrane of the human corneal epithelium, Invest. Ophthalmol. Vis. Sci. 24: 1015–1028.PubMedGoogle Scholar
  8. Amir, N., Zlotogora, J., and Bach, G., 1987, Mucolipidosis type IV: Clinical spectrum and natural history, Pediatrics 79: 953–959.PubMedGoogle Scholar
  9. Axelsson, I., 1984, Heterogeneity, polydispersity, and physiologic role of corneal proteoglycans. Acta Ophthalmol. 62: 25–38.Google Scholar
  10. Axelsson, I., and Heinegard, D., 1975, Fractionation of proteoglycans from bovine corneal stroma, Biochem. J. 145: 491–500.PubMedGoogle Scholar
  11. Axelsson, I., and Heinegard, D., 1978, Characterization of the keratan sulphate proteoglycans from bovine corneal stroma, Biochem. J. 169: 517–530.PubMedGoogle Scholar
  12. Axelsson, I., and Heinegard, D., 1980, Characterization of chondroitin sulfate-rich proteoglycans from bovine corneal stroma, Exp. Eye Res. 31: 57–66.PubMedCrossRefGoogle Scholar
  13. Ayad, S., Chambers, C. A., Shuttleworth, C. A., and Grant, M. E., 1985, Isolation from bovine elastic tissues of collagen type VI and characterization of its form in vivo, Biochem. J. 230: 465–474.PubMedGoogle Scholar
  14. Bach, G., Zeigler, M., and Schaap, T., 1979, Mucolipidosis type IV: Ganglioside sialidase deficiency, Biochem. Biophys. Res. Commun. 90: 1341–1347.PubMedCrossRefGoogle Scholar
  15. Baratz, K. H., Proia, A. D., Klintworth, G. K., and Lapetina, E. G., 1987, Cholinergic stimulation of phosphatidylinositol hydrolysis by rat corneal epithelium in vitro, Curr. Eye Res. 6: 691–701.PubMedCrossRefGoogle Scholar
  16. Bazan, H. E. P., 1987, Corneal injury alters eicosanoid formation in the rabbit anterior segment in vivo, Invest. Ophthalmol.Vis. Sci. 28: 314–319.PubMedGoogle Scholar
  17. Bazan, H. E. P., and Bazan, N. G., 1984, Composition of phospholipide and free fatty acids and incorporation of labeled arachidonic acid in rabbit cornea. Comparison of epithelium, stroma and endothelium, Curr. Eye Res. 3: 1313–1319.PubMedCrossRefGoogle Scholar
  18. Bazan, H. E. P., King, W. D., and Rossowska, M., 1985a, Metabolism of phosphoinositides and inositol polyphosphates in rabbit corneal epithelium, Curr. Eye Res. 4: 793–801.PubMedCrossRefGoogle Scholar
  19. Bazan, H. E. P., Birkle, D. L., Beuerman, R., and Bazan, N. G., 1985b, Cryogenic lesion alters the metabolism of arachidonic acid in rabbit cornea layers, Invest. Ophthalmol. Vis. Sci. 26: 474–480.PubMedGoogle Scholar
  20. Bazan, H. E. P., Birkle, D. L., Beuerman, R. W., and Bazan, N. G., 1985c, Inflammation-induced stimulation of the synthesis of prostaglandins and lipoxygenase-reaction products in rabbit cornea, Curr. Eye Res. 4: 175–179.PubMedCrossRefGoogle Scholar
  21. Bazan, H. E. P., Dobard, P., and Reddy, S. T. K., 1987, Calcium-and phospholipid-dependent protein kinase C and phosphatidylinositol kinase: Two major phosphorylation systems in the cornea, Curr. Eye Res. 6: 667673.Google Scholar
  22. Beekhuis, W. H., and McCarey, B. E., 1986, Corneal epithelial Cl-dependent pump quantified, Exp. Eye Res. 43: 707–711.PubMedCrossRefGoogle Scholar
  23. Benya, P. D., and Padilla, S. R., 1986, Isolation and characterization of type VIII collagen synthesized by cultured rabbit corneal endothelial cells, J. Biol. Chem. 261: 4160–4169.PubMedGoogle Scholar
  24. Berman, E. R., 1970, Proteoglycans of bovine corneal stroma, in: Chemistry and Molecular Biology of the Intercellular Matrix, Vol. 2 ( E. A. Balazs, ed.), Academic Press, New York, pp. 879–886.Google Scholar
  25. Berman, E. R., 1982, Mucolipidoses, in: Pathobiology of Ocular Disease ( A. Garner and G. K. Klintworth, eds.), Marcel Dekker, New York, pp. 931–946.Google Scholar
  26. Berman, E. R., Livni, N., Shapira, E., Merin, S., and Levij, I. S., 1974, Congenital corneal clouding with abnormal systemic storage bodies: A new variant of mucolipidosis, J. Pediatr. 84: 519–526.PubMedCrossRefGoogle Scholar
  27. Berman, M., 1978, Regulation of collagenase. Therapeutic considerations, Trans. Ophthalmol. Soc. U.K. 98: 397–405.PubMedGoogle Scholar
  28. Berman, M., Leary, R., and Gage, J., 1977, Latent collagenase in the ulcerating rabbit cornea, Exp. Eye Res. 25: 435–445.PubMedCrossRefGoogle Scholar
  29. Berman, M., Leary, R., and Gage, J., 1979, Collagenase from corneal cell cultures and its modulation by phagocytosis, Invest. Ophthalmol. Vis. Sci. 18: 588–601.PubMedGoogle Scholar
  30. Berman, M., Leary, R., and Gage, J., 1980, Evidence for a role of the plasminogen activator-plasmin system in corneal ulceration, Invest. Ophthalmol. Vis. Sci. 19: 1204–1221.PubMedGoogle Scholar
  31. Berman, M., Manseau, E., Law, M., and Aiken, D., 1983, Ulceration is correlated with degradation of fibrin and fibronectin at the corneal surface, Invest. Ophthalmol. Vis. Sci. 24: 1358–1366.PubMedGoogle Scholar
  32. Berman, M., Kenyon, K., Hayashi, K., and L’Hernault, N., 1988, The pathogenesis of epithelial defects and stromal ulceration, in: The Cornea: Transactions of the World Congress on the Cornea III ( H. D. Cavanagh, ed.), Raven Press, New York, pp. 35–43.Google Scholar
  33. Bernard, B. A., De Luca, L. M., Hassell, J. R., Yamada, K. M., and Olden, K., 1984, Retinoic acid alters the proportion of high mannose to complex type oligosaccharides on fibronectin secreted by cultured chondrocytes, J. Biol. Chem. 259: 5310–5315.PubMedGoogle Scholar
  34. Bhuyan, K. C., and Bhuyan, D. K., 1977, Regulation of hydrogen peroxide in eye humors. Effect of 3-amino-1H-1,2,4-triazole on catalase and glutathione peroxidase of rabbit eye, Biochim. Biophys. Acta 497: 641–651.PubMedCrossRefGoogle Scholar
  35. Bhuyan, K. C., and Bhuyan, D. K., 1978, Superoxide dismutase of the eye. Relative functions of superoxide dismutase and catalase in protecting the ocular lens from oxidative damage, Biochim. Biophys. Acta 542: 28–38.PubMedCrossRefGoogle Scholar
  36. Birk, D. E., Fitch, J. M., Babiarz, J. P., and Linsenmayer, T. F., 1988, Collagen type I and type V are present in the same fibril in the avian corneal stroma, J. Cell Biol. 106: 999–1008.PubMedCrossRefGoogle Scholar
  37. Bleckmann, H., and Kresse, H., 1980, Glycosaminoglycan metabolism of cultured cornea cells derived from bovine and human stroma and from bovine epithelium, Exp. Eye Res. 30: 469–479.PubMedCrossRefGoogle Scholar
  38. Bondi, A., and Sklan, D., 1984, Vitamin A and carotene in animal nutrition, Prog. Food Nutr. Sci. 8: 165–191.PubMedGoogle Scholar
  39. Brekle, A., and Mersmann, G., 1981, The carbohydrate-protein binding region in keratan sulfate from bovine cornea: Structure of a major binding region oligosaccharide, Biochim. Biophys. Acta 675: 322–327.PubMedCrossRefGoogle Scholar
  40. Brightwell, J. R., Riddle, S. L., Eiferman, R. A., Valenzuela, P., Barr, P. J., Merryweather, J. P., and Schultz, G.S., 1985, Biosynthetic human EGF accelerates healing of neodecadron-treated primate corneas, Invest. Ophthalmol. Vis. Sci. 26: 105–110.PubMedGoogle Scholar
  41. Brown, S. I., Weller, C. A., and Akiya, S., 1970, Pathogenesis of ulcers of the alkali-burned cornea, Arch. Ophthalmol. 83: 205–208.PubMedCrossRefGoogle Scholar
  42. Bruns, R. R., Press, W., and Gross, J., 1987, A large-scale, orthogonal network of microfibril bundles in the corneal stroma, Invest. Ophthalmol. Vis. Sci. 28: 1939–1946.PubMedGoogle Scholar
  43. Caimi, L., Tettamanti, G., and Berra, B., 1982, Mucolipidosis IV, a sialolipidosis due to ganglioside sialidase deficiency, J. Inherit. Metab. Dis. 5: 218–224.PubMedCrossRefGoogle Scholar
  44. Carter-Dawson, L., Tanaka, M., Kuwabara, T., and Bieri, J. G., 1980, Early corneal changes in vitamin A deficient rats, Exp. Eye Res. 30: 261–268.PubMedCrossRefGoogle Scholar
  45. Chalfie, M., Neufeld, A. H., and Zadunaisky, J.A., 1972, Action of epinephrine and other cyclic AMP-mediated agents on the chloride transport of the frog cornea, Invest. Ophthalmol. 11: 644–650.PubMedGoogle Scholar
  46. Chung, J.-H., Fagerholm, P., and Lindstrom, B., 1989, Hyaluronate in healing of corneal alkali wound in the rabbit, Exp. Eye Res. 48: 569–576.PubMedCrossRefGoogle Scholar
  47. Chung, S. M., Proia, A. D., Klintworth, G. K., Watson, S. P., and Lapetina, E. G., 1985, Deoxycholate induces the preferential hydrolysis of polyphosphoinositides by human platelet and rat corneal phospholipase C, Biochem. Biophys. Res. Commun. 129: 411–416.PubMedCrossRefGoogle Scholar
  48. Church, R. L., SundarRaj, N., and Rohrbach, D. H., 1981, Gene mapping of human ocular connective tissue proteins. Assignment of the strutural gene for corneal type I procollagen to human chromosome 7 in human corneal stroma-mouse fibroblast somatic cell hybrids, Invest. Ophthalmol. Vis. Sci. 21: 73–79.PubMedGoogle Scholar
  49. Cintron, C., and Hong, B.-S., 1988, Heterogeneity of collagens in rabbit cornea: Type VI collagen, Invest. Ophthalmol. Vis. Sci. 29: 760–766.PubMedGoogle Scholar
  50. Cintron, C., Hong, B.-S., and Kublin, C. L., 1981, Quantitative analysis of collagen from normal developing corneas and corneal scars, Curr. Eye Res. 1: 1–8.PubMedCrossRefGoogle Scholar
  51. Cintron, C., Fujikawa, L. S., Covington, H., Foster, C. S., and Colvin, R. B., 1984, Fibronectin in developing rabbit cornea, Curr. Eye Res. 3: 489–499.PubMedCrossRefGoogle Scholar
  52. Cintron, C., Hong, B.-S., Covington, H. I., and Macarak, E. J., 1988, Heterogeneity of collagens in rabbit cornea: Type III collagen, Invest. Ophthalmol. Vis. Sci. 29: 767–775.PubMedGoogle Scholar
  53. Colley, A. M., Cavanagh, H. D., Drake, L. A., and Law, M. L., 1985, Cyclic nucleotides in muscarinic regulation of DNA and RNA polymerase activity in cultured corneal epithelial cells of the rabbit, Curr. Eye Res. 4: 941–950.PubMedCrossRefGoogle Scholar
  54. Colley, A. M., Law, M. L., Drake, L. A., and Cavanagh, H. D. 1987, Activity of DNA and RNA polymerases in resurfacing rabbit corneal epithelium, Curr. Eye Res. 6: 477–487.PubMedCrossRefGoogle Scholar
  55. Conrad, G. W., Ager-Johnson, P., and Woo, M.-L., 1982, Antibodies against the predominant glycosaminoglycan of the mammalian cornea, keratan sulfate-I, J. Biol. Chem. 257: 464–471.PubMedGoogle Scholar
  56. Cooper, D., Schermer, A., and Sun, T.-T., 1985, Biology of Disease. Classification of human epithelia and their neoplasms using monoclonal antibodies to keratins: Strategies, applications, and limitations, Lab. Invest. 52: 243–256.PubMedGoogle Scholar
  57. Cork, R. J., Reinach, P., Moses, J., and Robinson, K. R., 1987, Calcium does not act as a second messenger for adrenergic and cholinergic agonists in corneal epithelial cells, Curr. Eye Res. 6: 1309–1317.PubMedCrossRefGoogle Scholar
  58. Coster, L., Cintron, C., Damle, S. P., and Gregory, J. D., 1983, Proteoglycans of rabbit cornea: Labelling in organ culture and in vivo, Exp. Eye Res. 36: 517–530.PubMedCrossRefGoogle Scholar
  59. Crandall, B. F., Philippart, M., Brown, W. J., and Bluestone, D. A., 1982, Review article: Mucolipidosis IV, Am. J. Med. Genet. 12: 301–308.PubMedCrossRefGoogle Scholar
  60. Critchfield, J. W., Calandra, A. J., Nesburn, A. B., and Kenney, M. C., 1988, Keratoconus: I. Biochemical studies, Exp. Eye Res. 46: 953–963.PubMedCrossRefGoogle Scholar
  61. Crosson, C. E., Klyce, S. D., Bazan, H. E. P., and Bazan, N. G., 1986, The effect of phorbol esters on the chloride secreting epithelium of the rabbit cornea, Curr. Eye Res. 5: 535–541.PubMedCrossRefGoogle Scholar
  62. Crouch, R., Priest, D. G., and Duke, E. J., 1978, Superoxide dismutase activities of bovine ocular tissues, Exp. Eye Res. 27: 503–509.PubMedCrossRefGoogle Scholar
  63. Crouch, R. K., Patrick, J., Goosey, J., and Coles, W. H., 1984, The effect of age on corneal and lens superoxide dismutase, Curr. Eye Res. 3: 1119–1123.PubMedCrossRefGoogle Scholar
  64. Culp, T. W., Cunningham, R. D., Tucker, P. W., Jeter, J., and Deiterman, L. H., Jr., 1970, In vivo synthesis of lipids in rabbit iris, cornea and lens tissues, Exp. Eye Res. 9: 98–105.Google Scholar
  65. Dangel, M. E., Bremer, D. L., and Rogers, G. L., 1985, Treatment of corneal opacification in mucolipidosis IV with conjunctival transplantation, Am. J. Ophthalmol. 99: 137–141.PubMedGoogle Scholar
  66. Davison, P. F., and Galbavy, E. J., 1985, Fluorescent dyes demonstrate the uniform expansion of the growing rabbit cornea, Invest. Ophthalmol. Vis. Sci. 26: 1202–1209.PubMedGoogle Scholar
  67. De Luca, L. M., 1977, The direct involvement of vitamin A in glycosyl transfer reactions of mammalian membranes, Vitam. Horm. 35: 1–57.PubMedCrossRefGoogle Scholar
  68. Elgebaly, S. A., Downes, R. T., Bohr, M., Forouhar, F., O’Rourke, J., and Kreutzer, D. L., 1987, Inflamma- tory mediators in alkali-burned corneas: Preliminary characterization, Curr. Eye Res. 6: 1263–1274.PubMedCrossRefGoogle Scholar
  69. El-Ghorab, M., Capone, A., Jr., Underwood, B. A., Hatchell, D., Friend, J., and Thoft, R. A., 1988, Response of ocular surface epithelium to corneal wounding in retinol-deficient rabbits, Invest. Ophthalmol. Vis. Sci. 29: 1671–1676.PubMedGoogle Scholar
  70. Eype, A. A., Kruit, P. J., Gaag, R. v. d., Neuteboom, G. H. G., Broersma, L., and Kijlstra, A., 1987, Autoimmunity against corneal antigens. II. Accessibility of the 54 kD corneal antigen for circulating antibodies, Curr. Eye Res. 6: 467–475.PubMedCrossRefGoogle Scholar
  71. Fabricant, R. N., Alpar, A. J., Centifanto, Y. M., and Kaufman, H. E., 1981, Epidermal growth factor receptors on corneal endothelium, Arch. Ophthalmol. 99: 305–308.PubMedCrossRefGoogle Scholar
  72. Feldman, G. L., 1967, Human ocular lipids: Their analysis and distribution, Surv. Ophthalmol. 12: 207–243.PubMedGoogle Scholar
  73. Fischbarg, J., and Lim. J. J., 1984, Fluid and electrolyte transports across corneal endothelium, in: Current Topics in Eye Research, Vol. 4 ( J. A. Zadunaisky and H. Dayson, eds.), Academic Press, Orlando, FL, pp. 201–223.Google Scholar
  74. Fischbarg, J., Hernandez, J., Liebovitch, L. S., and Koniarek, J. P., 1985, The mechanism of fluid and electrolyte transport across corneal endothelium: Critical revision and update of a model, Curr. Eye Res. 4: 351–360.PubMedCrossRefGoogle Scholar
  75. Fischer, F. H., Schmitz, L., Hoff, W., Schartl, S., Liegl, O., and Wiederholt, M., 1978, Sodium and chloride transport in the isolated human cornea, Pflugers Arch. 373: 179–188.PubMedCrossRefGoogle Scholar
  76. Frangieh, G. T., Hayashi, K., Teekhasaenee, C., Wolf, G., Colvin, R. B., Gipson, I. K., and Kenyon, K. R., 1989, Fibronectin and corneal epithelial wound healing in the vitamin A-deficient rat, Arch. Ophthalmol. 107: 567–571.PubMedCrossRefGoogle Scholar
  77. Friend, J., 1987, Physiology of the cornea: Metabolism and biochemistry, in: The Cornea. Scientific Foundations and Clinical Practice, 2nd ed. ( G. Smolin and R. A. Thoft, eds.), Little, Brown, Boston, pp. 16–38.Google Scholar
  78. Fujikawa, L. S., Foster, C. S., Harrist, T. J., Lanigan, J. M., and Colvin, R. B., 1981, Fibronectin in healing rabbit corneal wounds, Lab. Invest. 45: 120–129.PubMedGoogle Scholar
  79. Funderburgh, J. L., and Chandler, J. W., 1989, Proteoglycans of rabbit corneas with nonperforating wounds, Invest. Ophthalmol. Vis. Sci. 30: 435–442.PubMedGoogle Scholar
  80. Funderburgh, J. L., Stenzel-Johnson, P. R., and Chandler, J. W., 1982/1983, Monoclonal antibodies to rabbit corneal keratan sulfate proteoglycan, Curr. Eye Res. 2: 769–775.Google Scholar
  81. Funderburgh, J. L., Caterson, B., and Conrad, G. W., 1986, Keratan sulfate proteoglycan during embryonic development of the chicken cornea, Dev. Biol. 116: 267–277.PubMedCrossRefGoogle Scholar
  82. Funderburgh, J. L., Caterson, B., and Conrad, G. W., 1987, Distribution of proteoglycans antigenically related to corneal keratan sulfate proteoglycan, J. Biol. Chem. 262: 11634–11640.PubMedGoogle Scholar
  83. Geanon, J. D., Tripathi, B. J., Tripathi, R. C., and Barlow, G. H., 1987, Tissue plasminogen activator in avascular tissues of the eye: A quantitative study of its activity in the cornea, lens, and aqueous and vitreous humors of dog, calf, and monkey, Exp. Eye Res. 44: 55–63.PubMedCrossRefGoogle Scholar
  84. Geroski, D. H., and Edelhauser, H. F., 1984, Quantitation of Na/K ATPase pump sites in the rabbit corneal endothelium, Invest. Ophthalmol. Vis. Sci. 25: 1056–1060.PubMedGoogle Scholar
  85. Geroski, D. H., Edelhauser, H. F., and O’Brien, W. J., 1978, Hexose-monophosphate shunt response to diamide in the component layers of the cornea, Exp. Eye Res. 26: 611–619.PubMedCrossRefGoogle Scholar
  86. Geroski, D. H., Kies, J. C., and Edelhauser, H. F., 1984, The effects of ouabain on endothelial function in human and rabbit corneas, Curr. Eye Res. 3: 331–338.PubMedCrossRefGoogle Scholar
  87. Gerritsen, M. E., Rimarachin, J., Perry, C. A., and Weinstein, B. I., 1989, Arachidonic acid metabolism by cultured bovine corneal endothelial cells, Invest. Ophthalmol. Vis. Sci. 30: 698–705.PubMedGoogle Scholar
  88. Giblin, F. J., McCready, J. P.. Kodama, T., and Reddy, V. N., 1984, A direct correlation between the levels of ascorbic acid and H2O2 in aqueous humor, Exp. Eye Res. 38: 87–93.Google Scholar
  89. Gipson, I. K., and Anderson, R. A., 1977, Actin filaments in normal and migrating corneal epithelial cells, Invest. Ophthalmol. Vis. Sci. 16: 161–166.Google Scholar
  90. Gipson, I. K., and Anderson, R. A., 1980, Comparison of 10 nm filaments from three bovine tissues, Exp. Cell Res. 128: 395–406.PubMedCrossRefGoogle Scholar
  91. Gipson, I. K., and Kiorpes, T. C., 1982, Epithelial sheet movement: Protein and glycoprotein synthesis, Dev. Biol. 92: 259–262.PubMedCrossRefGoogle Scholar
  92. Gipson, I. K., Westcott, M. J., and Brooksby, N. G., 1982, Effects of cytochalasins B and D and colchicine on migration of the corneal epithelium, Invest. Ophthalmol. Vis. Sci. 22: 633–642.PubMedGoogle Scholar
  93. Gipson, I. K., Riddle, C. V., Kiorpes, T. C., and Spun, S. J., 1983, Lectin binding to cell surfaces: Comparisons between normal and migrating corneal epithelium, Dev. Biol. 96: 337–345.PubMedCrossRefGoogle Scholar
  94. Gipson, I. K., Kiorpes, T. C., and Brennan, S. J., 1984, Epithelial sheet movement: Effects of tunicamycin on migration and glycoprotein synthesis, Dev. Biol. 101: 212–220.PubMedCrossRefGoogle Scholar
  95. Gipson, I. K., Spurr-Michaud, S. J., and Tisdale, A. S., 1987, Anchoring fibrils form a complex network in human and rabbit cornea, Invest. Ophthalmol. Vis. Sci. 28: 212–220.PubMedGoogle Scholar
  96. Gipson, I. K., Spurr-Michaud, S., Tisdale, A., and Keough, M., 1989, Reassembly of the anchoring structures of the corneal epithelium during wound repair in the rabbit, Invest. Ophthalmol. Vis. Sci. 30: 425–434.PubMedGoogle Scholar
  97. Goldminz, D., Vlodaysky, I., Johnson, L. K., and Gospodarowicz, D., 1979, Contact inhibition and the regulation of endocytosis in the corneal endothelium: Correlation with a restricted surface receptor lateral mobility and the appearance of a fibronectin meshwork, Exp. Eye. Res. 29: 331–351.PubMedCrossRefGoogle Scholar
  98. Goodman, D. S., 1984, Plasma retinol-binding protein, in: The Retinoids, Vol. 2 ( M. B. Sporn, A. B. Roberts, and D. S. Goodman, eds.), Academic Press, Orlando, FL, pp. 41–88.Google Scholar
  99. Gordon, J. M., Bauer, E. A., and Eisen, A. Z., 1980, Collagenase in human cornea, Arch. Ophthalmol. 98: 341–345.PubMedCrossRefGoogle Scholar
  100. Gospodarowicz, D., Mescher, A. L., and Birdwell, C. R., 1977, Stimulation of corneal endothelial cell proliferation in vitro by fibroblast and epidermal growth factors, Exp. Eye Res. 25: 75–89.PubMedCrossRefGoogle Scholar
  101. Gospodarowicz, D., Greenburg, G., Foidart, J. M., and Savion, N., 1981, The production and localization of laminin in cultured vascular and corneal endothelial cells, J. Cell. Physiol. 107: 171–183.PubMedCrossRefGoogle Scholar
  102. Gottsch, J. D., Chen, C.-H., Aguayo, J. B., Cousins, J. P, Strahlman, E. R., and Stark, W. J., 1986, Glycolytic activity in the human cornea monitored with nuclear magnetic resonance spectroscopy, Arch. Ophthalmol. 104: 886–889.PubMedCrossRefGoogle Scholar
  103. Gottsch, J. D., Hairston, R. J., Chen, C.-H., Graham, C. R., Jr., and Stark, W. J., 1988, Corneal alanine metabolism demonstrated by NMR spectroscopy, Curr. Eye Res. 7: 253–256.PubMedCrossRefGoogle Scholar
  104. Gregory, J. D., Coster, L., and Damle, S. P., 1982, Proteoglycans of rabbit corneal stroma. Isolation and partial characterization, J. Biol. Chem. 257: 6965–6970.PubMedGoogle Scholar
  105. Gregory, J. D., Damle, S. P., Covington, H. I., and Cintron, C., 1988, Developmental changes in proteoglycans of rabbit corneal stroma, Invest. Ophthalmol. Vis. Sci. 29: 1413–1417.PubMedGoogle Scholar
  106. Greiner, J. V., Lass, J. H., and Glonek, T,. 1984, Ex vivo metabolic analysis of eye bank corneas using phosphorus nuclear magnetic resonance, Arch. Ophthalmol. 102: 1171–1173.Google Scholar
  107. Greiner, J. V., Braude, L. S., and Glonek, T., 1985a, Distribution of phosphatic metabolites in the porcine cornea using phosphorus-31 nuclear magnetic resonance, Exp. Eye Res. 40: 335–342.PubMedCrossRefGoogle Scholar
  108. Greiner, J. V., Kopp, S. J., and Glonek, T., 1985b, Phosphorus nuclear magnetic resonance and ocular metabolism, Surv. Ophthalmol. 30: 189–202.PubMedCrossRefGoogle Scholar
  109. Haddox, J. L., Pfister, R. R., and Yuille-Barr, D., 1989, The efficacy of topical citrate after alkali injury is dependent on the period of time it is administered, Invest. Ophthalmol. Vis. Sci. 30: 1062–1068.PubMedGoogle Scholar
  110. Hara, S., Ishiguro, S., and Mizuno, K., 1985, Phagocytosis of polystyrene spheres in the rabbit corneal endothelium: Contribution of lysosomal enzymes to the endothelial degeneration, Invest. Ophthalmol. Vis. Sci. 26: 1631–1634.PubMedGoogle Scholar
  111. Hart, G. W., and Lennarz, W.J., 1978, Effects of tunicamycin on the biosynthesis of glycosaminoglycans by embryonic chick cornea, J. Biol. Chem. 253: 5795–5801.PubMedGoogle Scholar
  112. Hassell, J. R., Newsome, D. A., and De Luca, L. M., 1980a, Increased biosynthesis of specific glycoconjugates in rat corneal epithelium following treatment with vitamin A, Invest. Ophthalmol. Vis. Sci. 19: 642–647.PubMedGoogle Scholar
  113. Hassell, J. R., Newsome, D. A., Krachmer, J. H., and Rodrigues, M. M., 1980b, Macular corneal dystrophy: Failure to synthesize a mature keratan sulfate proteoglycan, Proc. Natl. Acad. Sci. USA 77: 3705–3709.PubMedCrossRefGoogle Scholar
  114. Hassell, J. R., Cintron, C., Kublin, C. and Newsome, D. A., 1983, Proteoglycan changes during restoration of transparency in corneal scars, Arch. Biochem. Biophys. 222: 362–369.PubMedCrossRefGoogle Scholar
  115. Hatchell, D. L., Faculjak, M., and Kubicek, D., 1984, Treatment of xerophthalmia with retinol, tretinoin, and etretinate, Arch. Ophthalmol. 102: 926–927.PubMedCrossRefGoogle Scholar
  116. Hayashi, K., Frangieh, G., Kenyon, K. R., Berman, M., and Wolf, G., 1988, Plasminogen activator activity in vitamin A-deficient rat corneas, Invest. Ophthalmol. Vis. Sci. 29: 1810–1819.PubMedGoogle Scholar
  117. Hayashi, K., Cheng, H.-M., Xiong, J., Xiong, H., and Kenyon, K. R., 1989a, Metabolic changes in the cornea of vitamin A-deficient rats, Invest. Ophthalmol. Vis. Sci. 30: 769–772.PubMedGoogle Scholar
  118. Hayashi, K., Frangieh, G., Wolf, G., and Kenyon, K. R., 1989b, Expression of transforming growth factor-3 in wound healing of vitamin A-deficient rat corneas, Invest. Ophthalmol. Vis. Sci. 30: 239–247.PubMedGoogle Scholar
  119. Heinegard, D., Franzen, A., Hedbom, E., and Sommarin, Y., 1986, Common structures of the core proteins of interstitial proteoglycans, in: Functions of the Proteoglycans, Ciba Foundation Symposium 124 ( D. Evered and J. Whelan, eds.), John Wiley & Sons, Chichester, pp. 69–82.Google Scholar
  120. Hsieh, P., and Baum, J., 1985, Effects of fibroblastic and endothelial extracellular matrices on corneal endothelial cells, Invest. Ophthalmol. Vis. Sci. 26: 457–463.PubMedGoogle Scholar
  121. Ihalainen, A., Salo, T., Forsius, H., and Peltonen, L., 1986, Increase in type I and type IV collagenolytic activity in primary cultures of keratoconus cornea, Eur. J. Clin. Invest. 16: 78–84.PubMedCrossRefGoogle Scholar
  122. Ihme, A., Krieg, T., Muller, R. K. and Wollensak, J., 1983, Biochemical investigation of cells from keratoconus and normal cornea, Exp. Eye Res. 36: 625–631.PubMedCrossRefGoogle Scholar
  123. Jentsch, T. J., Keller, S.K., and Wiederholt, M., 1985, Ion transport mechanisms in cultured bovine corneal endothelial cells, Curr. Eye Res. 4: 361–369.PubMedCrossRefGoogle Scholar
  124. Jester, J. V., Rodrigues, M. M., and Sun, T.-T., 1985, Change in epithelial keratin expression during healing of rabbit corneal wounds, Invest. Ophthalmol. Vis. Sci. 26: 828–837.PubMedGoogle Scholar
  125. Johnson-Muller, B., and Gross, J., 1978, Regulation of corneal collagenase production: Epithelial—stromal cell interactions, Proc. Natl. Acad. Sci. USA 75: 4417–4421.PubMedCrossRefGoogle Scholar
  126. Jumblatt, M. M., and Neufeld, A. H., 1981, Characterization of cyclic AMP-mediated wound closure of the rabbit corneal epithelium, Curr. Eye Res. 1: 189–195.PubMedCrossRefGoogle Scholar
  127. Jumblatt, M. M., and Neufeld, A. H., 1986, A tissue culture assay of corneal epithelial wound closure, Invest. Ophthalmol. Vis. Sci. 27: 8–13.PubMedGoogle Scholar
  128. Jumblatt, M. M., Matkin, E. D., and Neufeld, A. H., 1988, Pharmacological regulation of morphology and mitosis in cultured rabbit corneal endothelium, Invest. Ophthalmol. Vis. Sci. 29: 586–593.PubMedGoogle Scholar
  129. Kao, W. W.-Y., Vergnes, J.-P., Ebert, J., Sundar-Raj, C. V., and Brown, S. I., 1982, Increased collagenase and gelatinase activities in keratoconus, Biochem. Biophys. Res. Commun. 107: 929–936.PubMedCrossRefGoogle Scholar
  130. Kao, W. W.-Y., Ebert, J., Kao, C. W.-C., Covington, H., and Cintron, C., 1986, Development of monoclonal antibodies recognizing collagenase from rabbit PMN; the presence of this enzyme in ulcerating corneas, Curr. Eye Res. 5: 801–815.PubMedCrossRefGoogle Scholar
  131. Kapoor, R., Bornstein, P., and Sage, E. H., 1986, Type VIII collagen from bovine Descemet’s membrane: Structural characterization of a triple-helical domain, Biochemistry 25: 3930–3937.PubMedCrossRefGoogle Scholar
  132. Kass, M. A., and Holmberg, N. J., 1979, Prostaglandin and thromboxane synthesis by microsomes of rabbit ocular tissues, Invest. Ophthalmol. Vis. Sci. 18: 166–171.PubMedGoogle Scholar
  133. Kay, E. P., 1989, Expression of types I and IV collagen genes in normal and in modulated corneal endothelial cells, Invest. Ophthalmol. Vis. Sci. 30: 260–268.PubMedGoogle Scholar
  134. Kay, E. P., and Oh, S., 1988, Modulation of type III collagen synthesis in bovine corneal endothelial cells, Invest. Ophthalmol. Vis. Sci. 29: 200–207.PubMedGoogle Scholar
  135. Kay, E. P., Smith, R. E., and Nimni, M. E., 1982, Basement membrane collagen synthesis by rabbit corneal endothelial cells in culture. Evidence for an a chain derived from a larger biosynthetic precursor, J. Biol. Chem. 257: 7116–7121.PubMedGoogle Scholar
  136. Kay, E. P., Nimni, M. E., and Smith, R. E., 1984, Stability of collagen phenotype in morphologically modulated rabbit corneal endothelial cells, Invest. Ophthalmol. Vis. Sci. 25: 495–501.PubMedGoogle Scholar
  137. Kay, E. P., Smith, R. E., and Nimni, M. E., 1985, Type I collagen synthesis by corneal endothelial cells modulated by polymorphonuclear leukocytes, J. Biol. Chem. 260: 5139–5146.PubMedGoogle Scholar
  138. Kenyon, K. R., Berman, M., Rose, J., and Gage, J., 1979, Prevention of stromal ulceration in the alkali-burned rabbit cornea by glued-on contact lens. Evidence for the role of polymorphonuclear leukocytes in collagen degradation, Invest. Ophthalmol. Vis. Sci. 18: 570–587.PubMedGoogle Scholar
  139. Kinoshita, S., Kiorpes, T. C., Friend, J., and Thoft, R. A., 1982, Limbal epithelium in ocular surface wound healing, Invest. Ophthalmol. Vis. Sci. 23: 73–80.PubMedGoogle Scholar
  140. Kinoshita, S., Friend, J., Kiorpes, T. C., and Thoft, R. A., 1983, Keratin-like proteins in corneal and conjunctival epithelium are different, Invest. Ophthalmol. Vis. Sci. 24: 577–581.PubMedGoogle Scholar
  141. Klintworth, G. K., 1982a, Degenerations, depositions, and miscellaneous reactions of the cornea, conjunctiva, and sclera, in: Pathobiology of Ocular Disease, Part B ( A. Garner and G. K. Klintworth, eds.), Marcel Dekker, New York, pp. 1431–1475.Google Scholar
  142. Klintworth, G. K., 1982b, Disorders of glycosaminoglycans (mucopolysaccharides) and proteoglycans, in: Pathobiology of Ocular Disease, Part B ( A. Garner and G. K. Klintworth, eds.), Marcel Dekker, New York, pp. 863–895.Google Scholar
  143. Klintworth, G. K., 1982c, Current concept of macular corneal dystrophy, in: Genetic Eye Diseases, Birth Defects: Original Article Series, Vol. 18 ( E. Cotlier, I. H. Maumenee, and E. R. Berman, eds.), Alan R. Liss, New York, pp. 463–477.Google Scholar
  144. Klintworth, G. K., and Smith, C. F., 1980, Abnormal product of corneal explants from patients with macular corneal dystrophy, Am. J. Pathol. 101: 143–157.PubMedGoogle Scholar
  145. Klintworth, G. K., and Smith, C. F., 1981, Difference between the glycosaminoglycans synthesized by corneal and cutaneous fibroblasts in culture, Lab. Invest. 44: 553–559.PubMedGoogle Scholar
  146. Klintworth, G. K., and Smith, C. F., 1983, Abnormalities of proteoglycans and glycoproteins synthesized by corneal organ cultures derived from patients with macular corneal dystrophy, Lab. Invest. 48: 603–612.PubMedGoogle Scholar
  147. Klintworth, G. K., Meyer, R., Dennis, R., Hewitt, A. T., Stock, E. L., Lenz, M. E., Hassell, J. R., Stark, W. J. Jr., Kuettner, K. E., and Thonar, E. J.-M. A., 1986, Macular corneal dystrophy. Lack of keratan sulfate in serum and cornea, Ophthalmic Paediatr. Genet. 7: 139–143.PubMedCrossRefGoogle Scholar
  148. Klyce, S. D., 1975, Transport of Na, Cl, and water by the rabbit corneal epithelium at resting potential, Am. J. Physiol. 228: 1446–1452.PubMedGoogle Scholar
  149. Klyce, S. D., 1977, Enhancing fluid secretion by the corneal epithelium, Invest. Ophthalmol. Vis. Sci. 16: 968–973.PubMedGoogle Scholar
  150. Klyce, S. D., and Crosson, C. E., 1985, Transport processes across the rabbit comeal epithelium: A review, Curr. Eye Res. 4: 323–331.PubMedCrossRefGoogle Scholar
  151. Klyce, S. D., Neufeld, A. H., and Zadunaisky, J. A., 1973, The activation of chloride transport by epinephrine and Db cyclic-AMP in the cornea of the rabbit, Invest. Ophthalmol. 12: 127–139.PubMedGoogle Scholar
  152. Klyce, S. D., Palkama, K. A., Harkonen, M., Marshall, W. S., Huhtaniitty, S., Mann, K. P., and Neufeld, A. H., 1982, Neural serotonin stimulates chloride transport in the rabbit comeal epithelium, Invest. Ophthalmol. Vis. Sci. 23: 181–192.PubMedGoogle Scholar
  153. Kohno, T., Sorgente, N., Ishibashi, T., Goodnight, R., and Ryan, S. J., 1987, Immunofluorescent studies of fibronectin and laminin in the human eye, Invest. Ophthalmol. Vis. Sci. 28: 506–514.PubMedGoogle Scholar
  154. Krachmer, H., Feder, R. S., and Belin, M. W., 1984, Keratoconus and related noninflammatory corneal thinning disorders, Surv. Ophthalmol. 28: 293–322.PubMedCrossRefGoogle Scholar
  155. Kruit, P. J., van der Gaag, R., Broersma, L., and Kijlstra, A., 1986, Autoimmunity against corneal antigens. I. Isolation of a soluble 54 Kd corneal epithelium antigen, Curr. Eye Res. 5: 313–320.PubMedCrossRefGoogle Scholar
  156. Kurkinen, M., Taylor, A., Garrels, J. I., and Hogan, B. L. M., 1984, Cell surface-associated proteins which bind native type IV collagen or gelatin, J. Biol. Chem. 259: 5915–5922.PubMedGoogle Scholar
  157. Labermeier, U., and Kenney, M. C., 1983, The presence of EC collagen and type IV collagen in bovine Descemet’s membranes, Biochem. Biophys. Res. Commun. 116: 619–625.PubMedCrossRefGoogle Scholar
  158. Labermeier, U., Demlow, T. A., and Kenney, M. C., 1983, Identification of collagens isolated from bovine Descemet’s membrane, Exp. Eye Res. 37: 225–237.PubMedCrossRefGoogle Scholar
  159. Laurent, T. C., and Anseth, A., 1961, Studies on corneal polysaccharides. II. Characterization, Exp. Eye Res. 1: 99–105.PubMedCrossRefGoogle Scholar
  160. Lee, R. E., and Davison, P. F., 1981, Collagen composition and turnover in ocular tissues of the rabbit, Exp. Eye Res. 32: 737–745.PubMedCrossRefGoogle Scholar
  161. Lee, R. E., and Davison P. F., 1984, The collagens of the developing bovine cornea, Exp. Eye Res. 39: 639–652.PubMedCrossRefGoogle Scholar
  162. Leonard, M. C., Maddison, L. K., and Pirie, A., 1981, A comparison between the enzymes in the cornea of the vitamin-A deficient rat and those of rat leucocytes, Exp. Eye Res. 33: 479–495.PubMedCrossRefGoogle Scholar
  163. Leonardy, N. J., Smith, C. F., Brown, C. F., and Klintworth, G. K., 1985, Intercellular relationships in the synthesis of macromolecules by organ cultures of corneas, Invest. Ophthalmol. Vis. Sci. 26: 1216–1222.PubMedGoogle Scholar
  164. Lin, M. T., Eiferman, R. A., and Wittliff, J. L., 1984, Demonstration of specific glucocorticoid binding sites in bovine cornea, Exp. Eye Res. 38: 333–339.PubMedCrossRefGoogle Scholar
  165. Masferrer, J. L., Murphy, R. C., Pagano, P. J., Dunn, M. W., and Laniado-Schwartzman, M., 1989, Ocular effects of a novel cytochrome P-450-dependent arachidonic acid metabolite, Invest. Ophthalmol. Vis. Sci. 30: 454–460.PubMedGoogle Scholar
  166. Masters, B. R., 1984a, Nonivasive redox fluorometry: How light can be used to monitor alterations of corneal mitochondrial function, Curr. Eye Res. 3: 23–26.PubMedCrossRefGoogle Scholar
  167. Masters, B. R., 1984b, Noninvasive corneal redox fluorometry, in: Current Topics in Eye Research, Vol. 4 ( J. A. Zadunaisky, and H. Dayson, eds.), Academic Press, Orlando, FL, pp. 139–200.Google Scholar
  168. Matsuda, M., Sawa, M., Edelhauser, H. F., Bartels, S. P., Neufeld, A. H., and Kenyon, K. R., 1985, Cellular migration and morphology in comeal endothelial wound repair, Invest. Ophthalmol. Vis. Sci. 26: 443–449.PubMedGoogle Scholar
  169. Matsuda, M., Ubels, J. L., and Edelhauser, H. F., 1986, Corneal endothelial healing rate and the effect of topical retinoic acid, Invest. Ophthalmol. Vis. Sci. 27: 1193–1198.PubMedGoogle Scholar
  170. Maurice, D. M., 1957, The structure and transparency of the cornea, J. Physiol.(Lond.) 136: 263–286.Google Scholar
  171. Maurice, D. M., 1972, The location of the fluid pump in the cornea, J. Physiol. (Lond.) 221:43–54. Maurice, D. M., 1984, The cornea and sclera, in: The Eye, 3rd ed. ( H. Dayson, ed.), Academic Press, New York, pp. 1–158.Google Scholar
  172. McCartney, M. D., Wood, T. O., and McLaughlin, B. J., 1987a, Freeze-fracture label of functional and dysfunctional human corneal endothelium, Curr. Eye Res. 6: 589–597.PubMedCrossRefGoogle Scholar
  173. McCartney, M. D., Robertson, D. P., Wood, T. O., and McLaughlin, B. J., 1987b, ATPase pump site density in human dysfunctional corneal endothelium, Invest. Ophthalmol. Vis. Sci. 28: 1955–1962.PubMedGoogle Scholar
  174. McCartney, M. D., Wood, T. O., and McLaughlin, B. J., 1987e, Immunohistochemical localization of ATPase in human dysfunctional corneal endothelium, Curr. Eye Res. 6: 1479–1486.PubMedCrossRefGoogle Scholar
  175. McKusick, V. A., and Neufeld, E. F., 1983, The mucopolysaccharide storage diseases, in: The Metabolic Basis of inherited Disease, 5th ed. ( J. B. Stanbury, J. B. Wyngaarden, D. S. Fredrickson, J. L. Goldstein, and M. S. Brown, eds.), McGraw-Hill, New York, pp. 751–777.Google Scholar
  176. Meek, K. M., Elliott, G. F., and Nave, C., 1986, A synchrotron x-ray diffraction study of bovine cornea stained with cupromeronic blue, Collagen Relat. Res. 6: 203–218.CrossRefGoogle Scholar
  177. Meyer, K., Linker, A., Davidson, E. A., and Weissman, B., 1953, The mucopolysaccharides of bovine cornea, J. Biol. Chem. 205: 611–616.PubMedGoogle Scholar
  178. Millin, J. A., Golub, B. M., and Foster, C. S., 1986, Human basement membrane components of keratoconus and normal corneas, Invest. Ophthalmol. Vis. Sci. 27: 604–607.PubMedGoogle Scholar
  179. Moll, R., Franke, W. W., Schiller, D. L., Geiger, B., and Krepler, R., 1982, The catalog of human cytokeratins: Patterns of expression in normal epithelia, tumors and cultured cells, Cell 31: 11–24.PubMedCrossRefGoogle Scholar
  180. Murphy, C., Alvarado, J., and Juster, R., 1984, Prenatal and postnatal growth of the human Descemet’s membrane, Invest. Ophthalmol. Vis. Sci. 25: 1402–1415.PubMedGoogle Scholar
  181. Nakayasu, K., Tanaka, M., Konomi, H., and Hayashi, T., 1986, Distribution of types I, II, III, IV and V collagen in normal and keratoconus corneas, Ophthalmic Res. 18: 1–10.PubMedCrossRefGoogle Scholar
  182. Nakazawa, K., Newsome, D. A., Nilsson, B., Hascall, V. C., and Hassell, J. R., 1983a, Purification of keratan sulfate proteoglycan from monkey cornea, J. Biol. Chem. 258: 6051–6055.PubMedGoogle Scholar
  183. Nakazawa, K., Hassell, J. R., Hascall, V. C., and Newsome, D. A., 1983b, Heterogeneity of proteoglycans in monkey corneal stroma, Arch. Biochem. Biophys. 222: 105–116.PubMedCrossRefGoogle Scholar
  184. Nakazawa, K., Hassell, J. R., Hascall, V. C., Lohmander, L. S., Newsome D. A., and Krachmer, J., 1984, Defective processing of keratan sulfate in macular corneal dystrophy, J. Biol. Chem. 259: 13751–13757.PubMedGoogle Scholar
  185. Neufeld, A. H., Ledgard, S. E., Jumblatt, M. M., and Klyce, S. D., 1982, Serotonin-stimulated cyclic AMP synthesis in the rabbit corneal epithelium, Invest. Ophthalmol. Vis. Sci. 23: 193–198.PubMedGoogle Scholar
  186. Neufeld, A. H., Ledgard, S. E., and Yoza, B. K., 1983, Changes in responsiveness of the ß-adrenergic and serotonergic pathways of the rabbit corneal epithelium, Invest. Ophthalmol. Vis. Sci. 24: 527–534.PubMedGoogle Scholar
  187. Neufeld, A. H., Jumblatt, M. M., Matkin, E. D., and Raymond, G.M., 1986, Maintenance of corneal endothelial cell shape by prostaglandin E2: Effects of EGF and indomethacin, Invest. Ophthalmol. Vis. Sci. 27: 1437–1442.PubMedGoogle Scholar
  188. Neufeld, E. F., and McKusick, V. A., 1983, Disorders of lysosomal enzyme synthesis and localization: I-cell disease and pseudo-Hurler polydystrophy, in: The Metabolic Basis of Inherited Disease, 5th ed.( J. B. Stanbury, J. B. Wyngaarden, D. S. Fredrickson, J. L. Goldstein, and M. S. Brown, eds. ), McGraw-Hill, pp. 778–802.Google Scholar
  189. Newell, F. W., Matalon, R., and Meyer, S., 1975, A new mucolipidosis with psychomotor retardation, corneal clouding, and retinal degeneration, Am. J. Ophthalmol. 80: 440–449.PubMedGoogle Scholar
  190. Newsome, D. A., Foidart, J.-M., Hassell, J. R., Krachmer, J. H., Rodrigues, M. M., and Katz, S. I., 1981, Detection of specific collagen types in normal and keratoconus comeas, Invest. Ophthalmol. Vis. Sei. 20: 738–750.Google Scholar
  191. Newsome, D. A., Gross, J., and Hassell, J. R., 1982, Human corneal stroma contains three distinct collagens, Invest. Ophthalmol. Vis. Sci. 22: 376–381.PubMedGoogle Scholar
  192. Ng, M. C., and Riley, M. V., 1980, Relation of intracellular levels and redox state of glutathione to endothelial function in the rabbit cornea, Exp. Eye Res. 30: 511–517.PubMedCrossRefGoogle Scholar
  193. Nilsson, B., Nakazawa, K., Hassell, J. R., Newsome, D.A., and Hascall, V.C., 1983, Structure of oligosaccharides and the linkage region between keratan sulfate and the core protein on proteoglycans from monkey cornea, J. Biol. Chem. 258: 6056–6063.PubMedGoogle Scholar
  194. Nishida, T., Nakagawa, S., Awata, T., Nishibayashi, C., and Manabe, R., 1982, Rapid preparation of purified autologous fibronectin eyedrops from patient’s plasma, Jpn. J. Ophthalmol. 26: 416–424.PubMedGoogle Scholar
  195. Nishida, T., Nakagawa, S., Awata, T., Ohashi, Y., Watanabe, K., and Manabe, R., 1983a, Fibronectin promotes epithelial migration of cultured rabbit cornea in situ, J. Cell Biol. 97: 1653–1657.PubMedCrossRefGoogle Scholar
  196. Nishida, T., Ohashi, Y., Awata, T., and Manabe, R., 1983b, Fibronectin. A new therapy for corneal trophic ulcer, Arch. Ophthalmol. 101: 1046–1048.PubMedCrossRefGoogle Scholar
  197. Nishida, T., Nakagawa, S., and Manabe, R., 1985, Clinical evaluation of fibronectin eyedrops on epithelial disorders after herpetic keratitis, Ophthalmology 92: 213–216.PubMedGoogle Scholar
  198. Nishida, T., Nakagawa, S., Watanabe, K., Yamada, K., McDonald, J., Otori, T., and Berman, M., 1986, Pathobiology of epithelial defects: Peptide (GRGDS) of fibronectin cell-binding domain inhibits corneal epithelial attachment and spreading on plasma fibronectin, Invest. Ophthalmol. Vis. Sci. [Suppl.] 27: 53.Google Scholar
  199. Nishida, T., Nakagawa, S., Watanabe, K., Yamada, K. M., Otori, T., and Berman, M. B., 1988, A peptide from fibronectin cell-binding domain inhibits attachment of epithelial cells, Invest. Ophthalmol. Vis. Sci. 29: 1820–1825.PubMedGoogle Scholar
  200. Osborne, N. N., 1983, The occurrence of serotonergic nerves in the bovine cornea, Neurosci. Lett. 35: 15–18.PubMedCrossRefGoogle Scholar
  201. Osborne, N. N., and Tobin, A. B., 1987, Serotonin-accumulating cells in the iris—ciliary body and cornea of various species, Exp. Eye Res. 44: 731–746.PubMedCrossRefGoogle Scholar
  202. Oxlund, H., and Simonsen, A. H., 1985, Biochemical studies of normal and keratoconus corneas, Acta Ophthalmol. 63: 666–669.Google Scholar
  203. Pandolfi, M., and Lantz, E., 1979, Partial purification and characterization of keratokinase, the fibrinolytic activator of the cornea, Exp. Eye Res. 29: 563–571.PubMedCrossRefGoogle Scholar
  204. Panjwani, N., and Baum, J., 1985, Rabbit corneal endothelial cell surface glycoproteins, Invest. Ophthalmol. Vis. Sci. 26: 450–456.PubMedGoogle Scholar
  205. Pesin, S. R., and Candia, O.A., 1982, Acetylcholine concentration and its role in ionic transport by the corneal epithelium, Invest. Ophthalmol. Vis. Sci. 22: 651–659.PubMedGoogle Scholar
  206. Pfister, R. R., Hayes, S. A., and Paterson, C. A., 1981, The influence of parenteral ascorbate on the strength of corneal wounds, Invest. Ophthalmol. Vis. Sci. 21: 80–86.PubMedGoogle Scholar
  207. Pfister, R. R., Haddox, J. L., Dodson, R. W., and Harkins, L. E., 1987, Alkali-burned collagen produces a locomotory and metabolic stimulant to neutrophils, Invest. Ophthalmol. Vis. Sci. 28: 295–304.PubMedGoogle Scholar
  208. Phan, T.-M. M., Gipson, I. K., Foster, C. S., Zagachin, L., and Colvin, R. B., 1986, Endogenous production of fibronectin in corneal stromal wounds: An organ culture cross-species transplant study, Invest. Ophthalmol. Vis. Sci. [Suppl.] 27: 52.Google Scholar
  209. Phan, T.-M. M., Foster, C. S., Boruchoff, S. A., Zagachin, L. M., and Colvin, R. B., 1987, Topical fibronectin in the treatment of persistent corneal epithelial defects and trophic ulcers, Am. J. Ophthalmol. 104: 494–501.PubMedGoogle Scholar
  210. Phan, T.-M. M., Foster, C. S., Wasson, P. J., Fujikawa, L. S., Zagachin, L. M., and Colvin, R. B., 1989a, Role of fibronectin and fibrinogen in healing of corneal epithelial scrape wounds, Invest. Ophthalmol. Vis. Sci. 30: 377–385.PubMedGoogle Scholar
  211. Phan, T.-M. M., Foster, C. S., Zagachin, L. M., and Colvin, R. B., 1989b, Role of fibronectin in the healing of superficial keratectomies in vitro, Invest. Ophthalmol. Vis. Sci. 30: 386–391.PubMedGoogle Scholar
  212. Pirie, A., 1977, Effects of locally applied retinoic acid on corneal xerophthalmia in the rat, Exp. Eye Res. 25: 297–302.PubMedCrossRefGoogle Scholar
  213. Poole, A. R., 1986, Proteoglycans in health and disease: Structures and functions, Biochem. J. 236: 1–14.PubMedGoogle Scholar
  214. Proia, A. D., Chung, S. M., Klintworth, G. K., and Lapetina, E. G., 1986, Cholinergic stimulation of phosphatidic acid formation by rat cornea in vitro, Invest. Ophthalmol. Vis. Sci. 27: 905–908.PubMedGoogle Scholar
  215. Rao, N. A., Thaete, L. G., Delmage, J. M., and Sevanian, A., 1985, Superoxide dismutase in ocular structures, Invest. Ophthalmol. Vis. Sci. 26: 1778–1781.PubMedGoogle Scholar
  216. Rask, L., Geijer, C., Bill, A., and Peterson, P. A., 1980, Vitamin A supply of the cornea, Exp. Eye Res. 31: 201–211.PubMedCrossRefGoogle Scholar
  217. Raymond, G. M., Jumblatt, M. M., Bartels, S. P., and Neufeld, A.H., 1986, Rabbit corneal endothelial cells in vitro: Effects of EGF, Invest. Ophthalmol. Vis. Sci. 27: 474–479.PubMedGoogle Scholar
  218. Reddy, C., Stock, E. L., Mendelsohn, A. D., Nguyen, H. S., Roth, S. I., and Ghosh, S., 1987, Pathogenesis of experimental lipid keratopathy: Corneal and plasma lipids, Invest. Ophthalmol. Vis. Sci. 28: 1492–1496.PubMedGoogle Scholar
  219. Redmond, T. M., Duke, E. J., Coles, W. H., Simson, J. A. V., and Crouch, R. K., 1984, Localization of corneal superoxide dismutase by biochemical and histocytochemical techniques, Exp. Eye Res. 38: 369378.Google Scholar
  220. Rehany, U., and Shoshan, S., 1984, In vitro incorporation of proline into keratoconic human corneas, Invest. Ophthalmol. Vis. Sci. 25: 1254–1257.Google Scholar
  221. Reinach, P., and Holmberg, N., 1987, Ca-stimulated Mg dependent ATPase activity in a plasma membrane enriched fraction of bovine corneal epithelium, Curr. Eye Res. 6: 399–405.PubMedCrossRefGoogle Scholar
  222. Reinach, P., and Holmberg, N., 1989, Inhibition by calcium of beta adrenoceptor mediated cAMP responses in isolated bovine corneal epithelial cells, Curr. Eye Res. 8: 85–90.PubMedCrossRefGoogle Scholar
  223. Reinach, P. S., and Kirchberger, M. A., 1983, Evidence for catecholamine-stimulated adenylate cyclase activity in frog and rabbit corneal epithelium and cyclic AMP-dependent protein kinase and its protein substrates in frog corneal epithelium, Exp. Eye Res. 37: 327–335.PubMedCrossRefGoogle Scholar
  224. Riedel, K. G., Zwaan, J., Kenyon, K. R., Kolodny, E. H., Hanninen, L., and Albert, D. M., 1985, Ocular abnormalities in mucolipidosis IV, Am. J. Ophthalmol. 99: 125–136.PubMedGoogle Scholar
  225. Riley, M. V., 1977, Anion-sensitive ATPase in rabbit corneal endothelium and its relation to corneal hydration, Exp. Eye Res. 25: 483–494.PubMedCrossRefGoogle Scholar
  226. Riley, M. V., 1982, Transport of ions and metabolites across the corneal endothelium, in: Cell Biology of the Eye ( D. S. McDevitt, ed.), Academic Press, New York, pp. 53–95.CrossRefGoogle Scholar
  227. Riley, M. V., 1984, A role for glutathione and glutathione reductase in control of corneal hydration, Exp. Eye Res. 39: 751–758.PubMedCrossRefGoogle Scholar
  228. Riley, M. V., 1985, Pump and leak in regulation of fluid transport in rabbit cornea, Curr. Eye Res. 4: 371–376.PubMedCrossRefGoogle Scholar
  229. Riley, M. V., and Giblin, F. J., 1982/1983, Toxic effects of hydrogen peroxide on corneal endothelium, Curr. Eye Res. 2: 451–458.Google Scholar
  230. Riley, M. V., and Peters, M. I., 1981, The localization of the anion-sensitive ATPase activity in corneal endothelium and its relation to corneal hydration, Biochim. Biophys. Acta 644: 251–256.PubMedCrossRefGoogle Scholar
  231. Riley, M. V., Schwartz, C. A., and Peters, M. I., 1986, Interactions of ascorbate and H2O2: Implications for in vitro studies of lens and cornea, Curr. Eye Res. 5: 207–216.PubMedCrossRefGoogle Scholar
  232. Risen, L. A., Binder, P. S., and Nayak, S. K., 1987, Intermediate filaments and their organization in human corneal endothelium, Invest. Ophthalmol. Vis. Sci. 28: 1933–1938.PubMedGoogle Scholar
  233. Roberts, A. B., Roche, N. S., and Sporn, M. B., 1985, Selective inhibition of the anchorage-independent growth of myc-transfected fibroblasts by retinoic acid, Nature 315: 237–239.PubMedCrossRefGoogle Scholar
  234. Rodrigues, M. M., and Waring, G. O., III, 1982, Anterior and posterior corneal dystrophies, in: Pathobiology of Ocular Disease, Part B ( A. Garner and G. K. Klintworth, eds.), Marcel Dekker, New York, pp. 1153–1166.Google Scholar
  235. Ruf, W., and Ebel, H., 1976, (Na+K+)-Activated ATPase in human cornea, Pflugers Arch. 366: 203–210.Google Scholar
  236. Sakai, L. Y., Keene, D. R., and Engvall, E., 1986, Fibrillin, a new 350-kD glycoprotein, is a component of extracellular microfibrils, J. Cell Biol. 103: 2499–2509.PubMedCrossRefGoogle Scholar
  237. Saliternik-Givant, S., and Berman, E. R., 1970, Biochemical heterogeneity of the corneal glycosaminoglycans, Ophthalmic Res. 1: 94–108.CrossRefGoogle Scholar
  238. Saneto, R. P., Awasthi, Y. C., and Srivastava, S. K., 1982a, Mercapturic acid pathway enzymes in bovine ocular lens, cornea, retina and retinal pigmented epithelium, Exp. Eye Res. 34: 107–111.CrossRefGoogle Scholar
  239. Saneto, R. P., Awasthi, Y. C., and Srivastava, S. K., 1982b, Purification and characterization of glutathione S-transferases from the bovine cornea, Exp. Eye Res. 35: 279–286.PubMedCrossRefGoogle Scholar
  240. Savion, N., and Farzame, N., 1986, Characterization of the Na, K-ATPase pump in cultured bovine corneal endothelial cells, Exp. Eye Res. 43: 355–363.PubMedCrossRefGoogle Scholar
  241. Schermer, A., Galvin, S., and Sun, T.-T., 1986, Differentiation-related expression of a major 64K corneal keratin in vivo and in culture suggests limbal location of corneal epithelial stem cells, J. Cell Biol. 103: 4962.CrossRefGoogle Scholar
  242. Schwartzman, M. L., Abraham, N. G., Masferrer, J., Dunn, M. W., and McGiff, J. C., 1985, Cytochrome P450 dependent metabolism of arachidonic acid in bovine corneal epithelium, Biochem. Biophys. Res. Commun. 132: 343–351.PubMedCrossRefGoogle Scholar
  243. Schwartzman, M. L., Balazy, M., Masferrer, J., Abraham, N. G., McGiff, J. C., and Murphy, R. C., 1987a, 12(R)- hydroxyicosatetraenoic acid: A cytochrome P450-dependent arachidonate metabolite that inhibits Na+,K+-ATPase in the cornea, Proc. Natl. Acad. Sci. USA 84: 8125–8129.Google Scholar
  244. Schwartzman, M. L., Masferrer, J., Dunn, M. W., McGiff, J. C., and Abraham, N. G., 1987b, Cytochrome P450, drug metabolizing enzymes and arachidonic acid metabolism in bovine ocular tissues, Curr. Eye Res. 6: 623–630PubMedCrossRefGoogle Scholar
  245. Scott, J. E., 1985, Proteoglycan histochemistry—A valuable tool for connective tissue biochemists, Collagen Relat. Res. 5: 541–575.CrossRefGoogle Scholar
  246. Scott, J. E., 1986, Proteoglycan-collagen interactions, in: Functions of the Proteoglycans, Ciba Foundation Symposium 124 ( D. Evered and J. Whelan, eds.), John Wiley & Sons, Chichester, pp. 104–124.Google Scholar
  247. Scott, J. E., 1988, Proteoglycan-fibrillar collagen interactions, Biochem. J. 252: 313–323.PubMedGoogle Scholar
  248. Scott, J. E., and Haigh, M., 1985, “Small”-proteoglycan: Collagen interactions: Keratan sulphate proteoglycan associates with rabbit corneal collagen fibrils at the “a” and “c” bands, Biosci. Rep. 5:765–774.Google Scholar
  249. Scott, J. E., and Haigh, M., 1988a, Keratan sulphate and the ultrastructure of cornea and cartilage: A “stand-in” for chondroitin sulphate in conditions of oxygen lack? J. Anat. 158: 95–108.PubMedGoogle Scholar
  250. Scott, J. E., and Haigh, M., 1988b, Identification of specific binding sites for keratan sulphate proteoglycans and chondroitin-dermatan sulphate proteoglycans on collagen fibrils in cornea by the use of cupromeronic blue in “critical-electrolyte-concentration” techniques, Biochem. J. 253: 607–610.PubMedGoogle Scholar
  251. Sendele, D. D., Kenyon, K. R., Wolf, G., and Hanninen, L. A., 1982, Epithelial abrasion precipitates stromal ulceration in the vitamin A-deficient rat cornea, Invest. Ophthalmol. Vis. Sci. 23: 64–72.PubMedGoogle Scholar
  252. Seng, W. L., Kenyon, K. R., and Wolf, G., 1982, Studies on the source and release of collagenase in thermally burned corneas of vitamin A-deficient and control rats, Invest. Ophthalmol. Vis. Sci. 22: 62–72.PubMedGoogle Scholar
  253. Shams, N. B. K., Sigel, M. M., Davis, J. F., and Ferguson, J. G., 1986, Corneal epithelial cells produce thromboxane in response to interleukin 1 (IL-1), Invest. Ophthalmol. Vis. Sci. 27: 1543–1545.PubMedGoogle Scholar
  254. Sharma, K. K., and Ortwerth, B. J., 1987, Purification and characterization of an aminopeptidase from bovine cornea, Exp. Eye Res. 45: 117–126.PubMedCrossRefGoogle Scholar
  255. Shichi, H., 1984, Biotransformation and drug metabolism, in: Pharmacology of the eye, Handbook of Pharmacology, Vol. 69 ( M. L. Sears, ed.), Springer-Verlag, Berlin, pp. 117–148.Google Scholar
  256. Silverman, B., Alexander, R. J., and Henley, W. L., 1981, Tissue and species specificity of BCP 54, the major soluble protein of bovine cornea, Exp. Eye Res. 33: 19–29.PubMedCrossRefGoogle Scholar
  257. Singh, G., and Foster, C. S., 1987, Epidermal growth factor in alkali-burned corneal epithelial wound healing, Am. J. Ophthalmol. 103: 802–807.PubMedGoogle Scholar
  258. Singh, S. V., Hong, T. D., Srivastava, S. K., and Awasthi, Y. C., 1985, Characterization of glutathione S-transferases of human cornea, Exp. Eye Res. 40: 431–437.PubMedCrossRefGoogle Scholar
  259. Sommer, A., 1983a, Effects of vitamin A deficiency on the ocular surface, Ophthalmology 90: 592–600.PubMedGoogle Scholar
  260. Sommer, A., 1983b, Treatment of corneal xerophthalmia with topical retinoic acid, Am. J. Ophthalmol. 95: 349–352.PubMedGoogle Scholar
  261. Sommer, A., and Emran, N., 1978, Topical retinoic acid in the treatment of corneal xerophthalmia, Am. J. Ophthalmol. 86: 615–617.PubMedGoogle Scholar
  262. Sommer, A., and Muhilal, H., 1982, Nutritional factors in corneal xerophthalmia and keratomalacia, Arch. Ophthalmol. 100: 399–403.PubMedCrossRefGoogle Scholar
  263. Soong, H. K., 1987, Vinculin in focal cell-to-substrate attachments of spreading corneal epithelial cells, Arch. Ophthalmol. 105: 1129–1132.PubMedCrossRefGoogle Scholar
  264. Soong, H. K., and Cintron, C., 1985, Different corneal epithelial healing mechanisms in rat and rabbit: Role of actin and calmodulin, Invest. Ophthalmol. Vis. Sci. 26: 838–848.PubMedGoogle Scholar
  265. Spector, A., and Garner, W. H., 1981, Hydrogen peroxide and human cataract, Exp. Eye Res. 33: 673–681.PubMedCrossRefGoogle Scholar
  266. Sporn, M. B., Roberts, A. B., Wakefield, L. M., and Assoian, R. K., 1986, Transforming growth factor-13: Biological function and chemical structure, Science 233: 532–534.PubMedCrossRefGoogle Scholar
  267. Sporn, M. B., Roberts, A. B., Wakefield, L. M., and de Crombrugghe, B., 1987, Some recent advances in the chemistry and biology of transforming growth factor-beta, J. Cell Biol. 105: 1039–1045.PubMedCrossRefGoogle Scholar
  268. Sramek, S. J., Wallow, I. H. L., Bindley, C., and Sterken, G., 1987, Fibronectin distribution in the rat eye, Invest. Ophthalmol. Vis. Sci. 28: 500–505.PubMedGoogle Scholar
  269. Stanifer, R. M., Snyder, R. K., and Kretzer, F. L., 1983, Cornea, in: Biochemistry of the Eye ( R. E. Anderson, ed.), American Academy of Ophthalmology, San Francisco, pp. 23–47.Google Scholar
  270. Steinert, P. M., Steven, A. C., and Roop, D. R., 1985, The molecular biology of intermediate filaments, Cell 42: 411–419.PubMedCrossRefGoogle Scholar
  271. Stratford, R. E., Jr., and Lee, V. H. L., 1985, Ocular aminopeptidase activity and distribution in the albino rabbit, Curr. Eye Res. 4: 995–999.PubMedCrossRefGoogle Scholar
  272. Stuhlsatz, H. W., Muthiah, P. L., and Greiling, H., 1972, Occurrence of dermatan sulfate in calf cornea, Scand. J. Clin. Lab. Invest. 29 (Suppl. 123): 31.Google Scholar
  273. Sturges, S. A., and Conrad, G. W., 1987, Acetylcholinesterase activity in the cornea of the developing chick embryo, Invest. Ophthalmol. Vis. Sci. 28: 850–858.PubMedGoogle Scholar
  274. Suda, T., Nishida, T., Ohashi, Y., Nakagawa, S., and Manabe, R., 1981/1982, Fibronectin appears at the site of corneal stromal wound in rabbits, Curr. Eye Res. 1: 553–556.Google Scholar
  275. SundarRaj, C. V., Church, R. L., Klobutcher, L. A., and Ruddle, F H, 1977, Genetics of the connective tissue proteins: Assignment of the gene for human type I procollagen to chromosome 17 by analysis of cell hybrids and microcell hybrids, Proc. Natl. Acad. Sci. USA 74: 4444–4448.CrossRefGoogle Scholar
  276. SundarRaj, N., Willson, J., Gregory, J. D., and Damle, S. P., 1985, Monoclonal antibodies to proteokeratan sulfate of rabbit corneal stroma, Curr. Eye Res. 4: 49–54.PubMedCrossRefGoogle Scholar
  277. SundarRaj, N., Barbacci-Tobin, E., Howe, W. E., Robertson, S. M., and Limetti, G., 1987, Macular corneal dystrophy: Immunochemical characterization using monoclonal antibodies, Invest. Ophthalmol. Vis. Sci. 28: 1678–1686.PubMedGoogle Scholar
  278. Surgue, S. P., 1987, Isolation of collagen binding proteins from embryonic chicken corneal epithelial cells, J. Biol. Chem. 262: 3338–3343.Google Scholar
  279. Surgue, S. P., and Hay, E. D., 1986, The identification of extracellular matrix (ECM) binding sites on the basal surface of embryonic corneal epithelium and the effect of ECM binding on epithelial collagen production, J. Cell Biol. 102: 1907–1916.CrossRefGoogle Scholar
  280. Taylor, L., Menconi, M., Leibowitz, H. M., and Polgar, P., 1982, The effect of ascorbate, hydroperoxides, and bradykinin on prostaglandin production by corneal and lens cells, Invest. Ophthalmol. Vis. Sci. 23: 378–382.PubMedGoogle Scholar
  281. Tèrvo, T., Sulonen, J., Valtonen, S., Vannas, A., and Virtanen, I., 1986, Distribution of fibronectin in human and rabbit corneas, Exp. Eye Res. 42: 399–406.PubMedCrossRefGoogle Scholar
  282. Thonar, E. J.-M. A., Meyer, R. F., Dennis. R. F., Lenz, M. E., Maldonado, B., Hassell, J. R., Hewitt, A. T., Stark, W. J., Stock, E. L., Kuettner, K. E., and Klintworth, G. K., 1986, Absence of normal keratan sulfate in the blood of patients with macular corneal dystrophy, Am. J. Ophthalmol. 102: 561–569.Google Scholar
  283. Tripathi, R. C., and Tripathi, B. J., 1982, Human trabecular endothelium, corneal endothelium, keratocytes, and scleral fibroblasts in primary cell culture. A comparative study of growth characteristics, morphology, and phagocytic activity by light and scanning electron microscopy, Exp. Eye Res. 35: 611–624.PubMedCrossRefGoogle Scholar
  284. Trueb, B., and Winterhalter, K. H., 1986, Type VI collagen is composed of a 200 kd subunit and two 140 kd subunits, EMBO J. 5: 2815–2819.PubMedGoogle Scholar
  285. Tseng, S. C. G., Hatchell, D., Tiemey, N., Huang, A. J.-W., and Sun, T.-T., 1984, Expression of specific keratin markers by rabbit corneal, conjunctival, and esophageal epithelia during vitamin A deficiency, J. Cell Biol. 99: 2279–2286.PubMedCrossRefGoogle Scholar
  286. Tùberville, A. W., Wood, T. O., and McLaughlin, B. J., 1986, Cytochrome oxidase activity of Fuchs’ endothelial dystrophy, Curr. Eye Res. 5: 939–947.PubMedCrossRefGoogle Scholar
  287. Twining, S. S., Hatchell, D. L., Hyndiuk, R. A., and Nassif, K. F., 1985, Acid proteases and histologic correlations in experimental ulceration in vitamin A deficient rabbit corneas, Invest. Ophthalmol. Vis. Sci. 26: 31–44.PubMedGoogle Scholar
  288. Ubels, J. L., and Edelhauser, H. F., 1982, Retinoid permeability and uptake in corneas of normal and vitamin A-deficient rabbits, Arch. Ophthalmol. 100: 1828–1831.PubMedCrossRefGoogle Scholar
  289. Ubels, J. L., and Edelhauser, H. F., 1985, In vivo metabolism of topically applied retinol and all-trans retinoic acid by the rabbit cornea, Biochem. Biophys. Res. Commun. 131: 320–327.Google Scholar
  290. Ubels, J. L., Edelhauser, H. F., and Austin, K. H., 1983, Healing of experimental corneal wounds treated with topically applied retinoids, Am. J. Ophthalmol. 95: 353–358.PubMedGoogle Scholar
  291. Ubels, J. L., Edelhauser, H. F., Foley, K. M., Liao, J. C., and Gressel, P., 1985, The efficacy of retinoic acid ointment for treatment of xerophthalmia and corneal epithelial wounds, Curr. Eye Res. 4: 1049–1057.PubMedCrossRefGoogle Scholar
  292. Ubels, J. L., Rismondo, V., and Edelhauser, H. F., 1987, Treatment of corneal xerophthalmia in rabbits with micromolar doses of topical retinoic acid, Curr. Eye Res. 6: 735–737.PubMedCrossRefGoogle Scholar
  293. van Horn, D. L., DeCarlo, J. D., Schutten, W. H., and Hyndiuk, R. A., 1981, Topical retinoic acid in the treatment of experimental xerophthalmia in the rabbit, Arch. Ophthalmol. 99: 317–321.PubMedCrossRefGoogle Scholar
  294. van Zoelen, E. J. J., van Oostwaard, T. M. J., and de Laat, S. W., 1986, Transforming growth factor-I3 and retinoic acid modulate phenotypic transformation of normal rat kidney cells induced by epidermal growth factor and platelet-derived growth factor, J. Biol. Chem. 261: 5003–5009.PubMedGoogle Scholar
  295. Walkenbach, R. J., and LeGrand, R. D., 1981, Regulation of cyclic AMP-dependent protein kinase and glycogen synthase by cyclic AMP in the bovine cornea, Exp. Eye Res. 33: 111–120.PubMedCrossRefGoogle Scholar
  296. Walkenbach, R. J., LeGrand, R. D., and Barr, R. E., 1981, Distribution of cyclic AMP-dependent protein kinase in the bovine cornea, Exp. Eye Res. 32: 451–459.PubMedCrossRefGoogle Scholar
  297. Wang, H.-M., Berman, M., and Law, M., 1985, Latent and active plasminogen activator in corneal ulceration, Invest. Ophthalmol. Vis. Sci. 26: 511–524.PubMedGoogle Scholar
  298. Waring, G. O., III, Bourne, W. M., Edelhauser, H. F., and Kenyon, K. R., 1982, The corneal endothelium. Normal and pathologic structure and function, Ophthalmology 89: 531–590.PubMedGoogle Scholar
  299. Watanabe, K., Nakagawa, S., and Nishida, T., 1987, Stimulatory effects of fibronectin and EGF on migration of corneal epithelial cells, Invest. Ophthalmol. Vis. Sci. 28: 205–211.PubMedGoogle Scholar
  300. Whikehart, D. R., and Soppet, D. R., 1981, Activities of transport enzymes located in the plasma membranes of corneal endothelial cells, Invest. Ophthalmol. Vis. Sci. 21: 819–825.PubMedGoogle Scholar
  301. Whikehart, D. R., Montgomery, B., and Hafer, L. M., 1987, Sodium and potassium saturation kinetics of Na+K+-ATPase in plasma membranes from corneal endothelium: Fresh tissue vs. tissue culture, Curr. Eye Res. 6: 709–717.PubMedCrossRefGoogle Scholar
  302. Wiggert, B., Bergsma, D. R., Helmsen, R. J., Alligood, J., Lewis, M., and Chader, G. J., 1977, Retinol receptors in corneal epithelium, stroma and endothelium, Biochim. Biophys. Acta 491: 104–113.PubMedCrossRefGoogle Scholar
  303. Wiggert, B., Van Horn, D. L., and Fish, B. L., 1982, Effects of vitamin A deficiency on [3H]retinoid binding to cellular retinoid-binding proteins in rabbit cornea and conjunctiva, Exp. Eye Res. 34: 695–702.PubMedCrossRefGoogle Scholar
  304. Williams, R. N., and Paterson, C. A., 1986, Modulation of corneal lipoxygenase by ascorbic acid, Exp. Eye Res. 43: 7–13.PubMedCrossRefGoogle Scholar
  305. Williams, R. N., Delamere, N. A., and Paterson, C. A., 1985, Generation of lipoxygenase products in the avascular tissues of the eye, Exp. Eye Res. 41: 733–738.PubMedCrossRefGoogle Scholar
  306. Yue, B. Y. J. T., Baum, J. L., and Smith, B.D., 1983, Identification of collagens synthesized by cultures of normal human corneal and keratoconus stromal cells, Biochim. Biophys. Acta 755: 318–325.PubMedCrossRefGoogle Scholar
  307. Yue, B. Y. J. T., Sugar, J., and Benveniste, K., 1984, Heterogeneity in keratoconus: Possible biochemical basis, Proc. Soc. Exp. Biol. Med. 175: 336–341.PubMedGoogle Scholar
  308. Yue, B. Y. J. T., Sugar, J., and Schrode, K., 1988, Histochemical studies of keratoconus, Curr. Eye Res. 7: 81–86.PubMedCrossRefGoogle Scholar
  309. Zagrod, M. E., and Whikehart, D. R., 1985, Adenosine-stimulated production of sugar-phosphates in bovine corneal endothelium, Invest. Ophthalmol. Vis. Sci. 26: 1475–1483.PubMedGoogle Scholar
  310. Zeigler, M., and Bach, G., 1985, Ganglioside sialidase distribution in mucolipidosis type IV cultured fibroblasts, Arch. Biochem. Biophys. 241: 602–607.PubMedCrossRefGoogle Scholar
  311. Zieske, J. D., and Gipson, I. K., 1986, Protein synthesis during corneal epithelial wound healing, Invest. Ophthalmol. Vis. Sci. 27: 1–7.PubMedGoogle Scholar
  312. Zieske, J. D., Higashijima, S. C., and Gipson, I. K., 1986, Con A- and WGA-binding glycoproteins of stationary and migratory corneal epithelium, Invest. Ophthalmol. Vis. Sci. 27: 1205–1210.PubMedGoogle Scholar
  313. Zieske, J. D., Higashijima, S. C., Spurr-Michaud, S. J., and Gipson, I. K., 1987, Biosynthetic responses of the rabbit cornea to a keratectomy wound, Invest. Ophthalmol. Vis. Sci. 28: 1668–1677.PubMedGoogle Scholar
  314. Zimmermann, D. R., Trueb, B., Winterhalter, K. H., Witmer, R., and Fischer, R. W., 1986, Type VI collagen is a major component of the human cornea, FEBS Lett. 197: 55–58.PubMedCrossRefGoogle Scholar
  315. Zimmermann, D. R., Fischer, R. W., Winterhalter, K. H., Witmer, R., and Vaughan, L., 1988, Comparative studies of collagens in normal and keratoconus corneas, Exp. Eye Res. 46: 431–442.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Elaine R. Berman
    • 1
  1. 1.Hadassah-Hebrew University Medical SchoolJerusalemIsrael

Personalised recommendations