Biochemistry of Sulfur pp 293-358 | Cite as
Sulfates
Abstract
Sulfonation is the transfer of SO3 − whereas sulfation is the transfer of SO4 2−. Thus, although the sulfur-containing product of the reaction shown in Equation 7-1 is a sulfate, the process by which it is made is a sulfonation. At the risk of confusion, it should be pointed out that although RO·SO3H is the sulfate of the alkane, RH, it can also be trivially named as the sulfonate of the alkanol, ROH. However, traditional misuse of nomenclature by biochemists has led to compounds of the form RO·SO3H being named as the sulfates of the alkanol, ROH. Thus, sulfonates of galactose are inaccurately but irredeemably called galactose sulfates, and compounds such as tyrosine O-sulfate and dopamine 3-sulfate (Figure 7-1) are equally malchristened. In this chapter and the next, I have chosen to avoid confusion rather than embrace consistency, and have reluctantly retained recognizable but erroneous names, rather than pepper the text with such unfamiliar forms as deoxygalactose sulfate or galactose sulfonate.
Keywords
Hyaluronic Acid Bile Salt Heparan Sulfate Chondroitin Sulfate Dermatan SulfatePreview
Unable to display preview. Download preview PDF.
References
- Abenhaim, L., Romain, Y., and Kuchel, O., 1981. Phenolsulfotransferase and catecholamines—physiological and pathological variations in humans, Can. J. Physiol. Pharmacol. 59:300–306.PubMedGoogle Scholar
- Adams, J. B., and McDonald, D., 1980. Enzymic synthesis of steroid sulphates. XIII. Isolation and properties of dehydroepiandrosterone sulphotransferase from human foetal adrenals, Biochim. Biophys. Acta 615:275–278.PubMedGoogle Scholar
- Adams, J. B., and Poulos, A., 1967. Enzymic synthesis of steroid sulphates. III. Isolation and properties of estrogen sulphotransferase of bovine adrenal glands, Biochem. J. 146:493–508.Google Scholar
- Adams, J. B., Ellyard, R. K., and Low, J., 1974. Enzymic synthesis of steroid sulphates. IX. Physical and chemical properties of purified oestrogen sulphotransferase from bovine adrenal glands, the nature of its isoenzymic forms and a proposed model to explain its wave-like kinetics, Biochim. Biophys. Acta 370:160–188.PubMedGoogle Scholar
- Anastasi, A., Bernardi, L., Bertaccini, G., Basisio, G., Castiglione, R. D., Erspamer, V., Goffredo, O., and Impicciatore, M., 1968. Synthetic peptides related to caerulin, Experientia 24:771.PubMedGoogle Scholar
- Andersen, B. N., 1984. Measurement and occurrence of sulfated gastrins, Scand. J. Clin. Lab. Invest. 44 (Suppl. 168):5–24.Google Scholar
- Anderson, R. J., Weinshilboum, R. M., Phillips, S. F., and Broughton, D. D., 1981. Human platelet phenol sulfotransferase: Assay procedure, substrate and tissue correlations, Clin. Chim. Acta 110:157–167.PubMedGoogle Scholar
- Andersson, B., Berggren, M., and Moldeus, P., 1978. Conjugation of various drugs in isolated hepatocytes, Drug Metab. Dispos. 6:611–616.PubMedGoogle Scholar
- Ashwell, G., and Morell, A. G., 1974. Role of surface carbohydrates in the hepatic recognition and transport of circulating glycoproteins, Adv. Enzymol. 41:99–128.PubMedGoogle Scholar
- Baker, J. T., 1974. Tyrian purple. Ancient dye, a modern problem, Endeavour 33:11–17.Google Scholar
- Bannerjee, R. K., and Roy, A. B., 1966. The sulfotransferases of guinea pig liver, Mol. Pharmacol. 2:56–66.Google Scholar
- Benitez, L. V., and Halver, J. E., 1982. Ascorbic acid sulfate sulfohydrolase (C2 sulfatase): The modulator of cellular levels of L-ascorbic acid in rainbow trout, Proc. Natl. Acad. Sci. USA 79:5445–5449.PubMedGoogle Scholar
- Berenson, G. S., Radhakrishnamurthy, B., Srinivasan, S. R., and Dalferes, E. R., Jr., 1973. Pathogenesis of coronary artery disease, in Nutrition and Metabolism in Medical Practice (S. L. Halpern, A. L. Lubby, and G. S. Berenson, eds.), Futura, New York, pp. 49–70.Google Scholar
- Berenson, G. S., Radhakrishnamurthy, B., Srinivasan, S. R., Vijayagopal, P., Dalferes, E. R., Jr., and Sharma, C., 1984. Recent advances in molecular pathology. Carbohydrate-protein macromolecules and arterial wall integrity—a role in atherogenesis, Exp. Mol. Pathol. 41:261–291.Google Scholar
- Bettelheim, F. A., 1970. Physical chemistry of acidic polysaccharides, in Biological Polyelectrolytes (A. Veis, ed.), Marcel Dekker, New York, pp. 131–210.Google Scholar
- Blackwell, J., Schodt, K. P., and Gelman, R. A., 1977. Polysaccharide polypeptide systems as models for heparin interactions, Fed. Proc. 36:98–100.PubMedGoogle Scholar
- Brimacombe, J. S., and Webber, J. W., 1964. Mucopoly saccharides, Elsevier, Amsterdam.Google Scholar
- Brooks, S. C., Pack, B. A., Rozhin, J., and Christensen, C., 1982. In situ control of estrogen activity by sulfurylation in uterus and other target tissues, in Sulfate Metabolism and Sulfate Conjugation (G. J. Mulder, J. Caldwell, G. M. J. Van Kempen, and R. T. Vonk, eds.), Taylor and Francis, London, pp. 173–180.Google Scholar
- Buckwalter, J. A., 1983. Proteoglycan structure in calcifying cartilage, Clin. Orthop. 172:207–232.PubMedGoogle Scholar
- Buonassi, V., 1973. Sulfated mucopolysaccharides. Synthesis and secretion in endothelial cell cultures, Exp. Cell Res. 76:363–368.Google Scholar
- Buonassi, V., 1975. Enzymatic degradation of heparin-related mucopolysaccharides from the surface of endothelial cell cultures, Biochim. Biophys. Acta 185:1–10.Google Scholar
- Butenandt, A., Biekert, E., Koga, N., and Traub, P., 1960. Über Ommochrome. XXI. Konstitution und Synthese des Ommatins D, Z. Physiol. Chem. 321:258–275.Google Scholar
- Buu, N. T., and Küchel, O., 1979a. Dopamine-4-O-sulfate: A possible precursor of free norepinephrine, Can. J. Biochem. 57:1159–1162.PubMedGoogle Scholar
- Buu, N. T., and Kuchel, O., 1979b. Dopamine-3-O-sulfate, a direct precursor of free norepinephrine; an alternative biosynthetic pathway? Adv. Biosci. 20:95–100.Google Scholar
- Chadwick, B. T., and Wilkinson, J. H., 1958. The formation of 5-hydroxytryptamine O-sulfate by rat liver homogenates, Biochem. J. 68:1P.Google Scholar
- Chakrabarti, B., and Park, J. W., 1980. Glycosaminoglycans: Structure and interaction, CRC Crit. Rev. Biochem. 8:225–313.PubMedGoogle Scholar
- Chen, L. J., Bolt, R. J., and Admirand, W. J., 1977. Enzymatic sulfation of bile salts. Partial purification and characterisation of an enzyme from rat liver that catalyses the sulfation of bile salts, Biochim. Biophys. Acta 480:219–227.PubMedGoogle Scholar
- Chen, L.-J., Imperato, T. J., and Bolt, R. J., 1978. Enzymatic sulfation of bile salts. II. Studies on bile salt sulfotransferase activity from rat kidney, Biochim. Biophys. Acta 522:443–451.PubMedGoogle Scholar
- Cho, T. M., Cho, J. S., and Loh, H. H., 1976. 3H-Cerebroside sulfate redistribution induced by cation, opiate or phosphatidylserine, Life Sci. 19:117–123.PubMedGoogle Scholar
- Cigonelli, J. A., 1974. The relationship of molecular weight and sulfate content and distribution to the anticoagulant activity of heparin preparations, Carbohydr. Res. 37:145–151.Google Scholar
- Comper, W. D., and Laurent, T. C., 1978. Physiological function of connective tissue polysaccharides, Physiol. Rev. 58:255–315.PubMedGoogle Scholar
- Cormier, M. J., Hori, K., Karkhanis, Y. D., Anderson, J. M., Wampler, J. E., Morin, J. G., and Hastings, J. W., 1973. Evidence for similar biochemical requirements for bioluminescence among the coelenterates, J. Cell. Physiol. 81:291–297.PubMedGoogle Scholar
- Craves, F. B., Zale, B., Leybin, L., Bauman, N., and Loh, H. H., 1979. Antibodies to cerebroside sulfate inhibit the effects of morphine and ß-endorphin, Science 207:75–76.Google Scholar
- Cuervo, L. A., Pita, J. C., and Howell, D. S., 1973. Inhibition of calcium phosphate mineral growth by proteoglycan aggregate fractions in a synthetic lymph, Calcif. Tissue Res. 13:1–10.PubMedGoogle Scholar
- Daniel, W. L., 1985. Arylsulfatase C and the steroid sulfatases, Curr. Top. Biol. Med. Res. 12:189–228.Google Scholar
- DeBaun, J. R., Rowley, J. Y., Miller, E. C., and Miller, J. A., 1968. Sulfotransferase activation of N-hydroxy-2-acetylaminofluorene in rodent livers susceptible and resistant to this carcinogen, Proc. Soc. Exp. Biol. Med. 129:268–273.PubMedGoogle Scholar
- DeBaun, J. R., Smith, J. Y. R., Miller, E. C., and Miller, J. A., 1970. Reactivity in vivo of the carcinogen N-hydroxy-2-acetylaminofluorene: increase by sulfate ion, Science 167:184.PubMedGoogle Scholar
- De Meio, R. H., 1975. Sulfate activation and transfer, in Metabolism of Sulfur Compounds (D. M. Greenberg, ed.), Academic Press, New York, pp. 287–358.Google Scholar
- Dodgson, K. S., 1977. Conjugation with sulfate, in Drug Metabolism from Microbe to Man (D. V. W. Parke and R. L. Smith, eds.), Taylor and Fransic, London, pp. 91–104.Google Scholar
- Dodgson, K. S., and Rose, F. A., 1970. Sulfoconjugation and sulfohydrolysis, in Metabolic-Conjugation and Metabolite Hydrolysis, Vol. 1 (W. H. Fishman, ed.), Academic Press, London, pp. 239–325.Google Scholar
- Dodgson, K. S., and Rose, F. A., 1975. Sulfohydrolases, in Metabolism of Sulfur Compounds (D. M. Greenberg, ed.), Academic Press, New York, pp. 359–431.Google Scholar
- Dodgson, K. S., and Rose, F. A., 1980. Observations on the biological roles of sulfatases, in Ciba Foundation Symposium Number 72, Sulphur in Biology, Excerpta Medica, Amsterdam, pp. 163–170.Google Scholar
- Dodgson, K. S., and Spencer, B., 1957. Sulfatases, Annu. Rep. Prog. Chem. 53:318–331.Google Scholar
- Dorfman, A., and Matalon, R., 1976. The mucopolysaccharidoses (a review), Proc. Natl. Acad. Sci. USA 73:630–637.PubMedGoogle Scholar
- Duffel, M., and Jakoby, W. B., 1981. On the mechanism of aryl sulfotransferase, J. Biol. Chem. 256:11,123–11,127.PubMedGoogle Scholar
- Dziewiatkowski, D. D., 1949. On the utilization of exogeneous sulfate sulfur by the rat in the formation of ethereal sulfates as indicated by the use of sodium sulfate labeled with radioactive sulfur, J. Biol. Chem. 178:389–393.PubMedGoogle Scholar
- Ehrlich, J., and Stivala, S. S., 1973. Chemistry and pharmacology of heparin, J. Pharm. Sci. 62:517–544.PubMedGoogle Scholar
- Engelberg, H., 1963. Heparin: Metabolism, Physiology and Clinical Applications, Charles C. Thomas, Springfield, Illinois.Google Scholar
- Engelberg, H., 1984. Heparin and the atherosclerotic process, Pharmacol. Rev. 36:91–110.PubMedGoogle Scholar
- Ettlinger, M. G., and Kjaer, A., 1968. Sulfur compounds in plants, in Recent Advances in Phytochemistry, Vol. I (T. J. Mabry, R. E. Alston, and V. C. Runeckles, eds.), Appleton-Century-Crofts, New York, pp. 59–144.Google Scholar
- Farooqui, A. M., 1978. Metabolism of sulfolipids in mammalian tissues: A review, Int. J. Biochem. 9:709.PubMedGoogle Scholar
- Farooqui, A. A., 1980. Sulfatases, sulfate esters and their metabolic disorders, Clin. Chim. Acta 100:359–372.Google Scholar
- Farooqui, A. A., 1981. Metabolism of sulfolipids in mammalian tissues, Adv. Lipid Res. 18:159–202.PubMedGoogle Scholar
- Fitzgerald, J. W., 1976. Sulfate ester formation and hydrolysis: A potentially important yet often ignored aspect of the sulfur cycle of aerobic soils, Bacteriol. Res. Sep. 40:698–721.Google Scholar
- Fitzgerald, J. W., and Payne, W. J., 1972. Repression in a Pseudomonas species of sulphatases active on short chain alkylsulphates, Microbios. 6:55–67.PubMedGoogle Scholar
- Fluharty, A. L., Stevens, R. L., Goldstein, E. B., and Kihara, H., 1979. Presence of arylsulfatase A in multiple sulfatase deficiency disorder fibroblasts, Am. J. Hum. Genet. 30:249–255.Google Scholar
- Fowler, L. J., and John, R. A., 1972. Active-site-directed irreversible inhibition of rat brain 4-aminobutyrate aminotransferase by ethanolamine O-sulfate in vitro and in vivo, Biochem. J. 130:569–573.PubMedGoogle Scholar
- Ghosh, P. C., Lockwood, E., and Pennington, G. W., 1973. Abnormal excretion of corticosteroid sulphates in patients with breast cancer, Br. Med. J. 1:328–330.PubMedGoogle Scholar
- Gigg, R., 1978. Studies on the synthesis of sulfur-containing glycolipids, in Carbohydrate Sulfates (R. G. Schweiger, ed.), American Chemical Society, Washington, D.C., pp. 44–66.Google Scholar
- Goldberg, I. H., 1961. The sulfolipids, J. Lipid Res. 2:103–109.PubMedGoogle Scholar
- Gomés, P. B., and Dietrich, C. P., 1982. Distribution of heparin and other sulfated glycosaminoglycans in vertebrates, Comp. Biochem. Physiol. 73B:857–863.Google Scholar
- Gonzalez, M., Morales, M., and Zambrano, F., 1979. Sulfate content and (Na+ + K +)-ATPase activity of skin and gill during larval development of the Chilean frog, Calyptocephalella caudiversbera, J. Membrane Biol. 51:347–359.Google Scholar
- Goren, M. B., Brokl, O., Roller, P., Fales, H. M., and Das, B. C., 1976a. Sulfatides of Mycobacterium tuberculosis: The structure of the principal sulfatide (SL-1), Biochemistry 15:2728–2735.PubMedGoogle Scholar
- Goren, M. B., D’Arcy Hart, P., Young, M. R., and Armstrong, J. A., 1976b. Prevention of phagosome-lysosome fusion in cultured macrophages by sulfatides of Mycobacterium tuberculosis, Proc. Natl. Acad. Sci. USA 73:2510–2514.PubMedGoogle Scholar
- Gorham, S. D., and Cantz, M., 1978. Arylsulphatase B, an exo-sulphatase for chondroitin 4-sulphate tetrasaccharide, Hoppe-Seyler’s Z. Physiol. Chem. 359:1811–1814.Google Scholar
- Grant, G. T., Morris, E. R., Rees, D. A., Smith, P. J. C., and Thorn, D., 1973. Biological interactions between polysaccharides and divalent cations: The egg-box model, FEBS Lett. 32:195–198.Google Scholar
- Gregory, R. A., and Tracy, H. J., 1964. The constitution and properties of two gastrins extracted from hog antral mucosa, Gut 5:103–117.PubMedGoogle Scholar
- Habuchi, H., Tsuji, M., Nakanishi, Y., and Suzuki, S., 1979. Separation and properties of five glycosaminoglycan sulfatases from rat skin, J. Biol. Chem. 254:7570–7578.PubMedGoogle Scholar
- Haines, T. H., 1971. Chemistry of the sulfolipids, Prog. Chem. Fats Lipids 11:297–345.Google Scholar
- Hansson, G. C., Karlsson, K. A., and Samuelsson, B. E., 1978. The identification of sulphatides in human erythrocyte membrane and their relation to sodium-potassium dependent adenosine triphosphatase, J. Biochem. (Tokyo) 83:813–819.Google Scholar
- Hansson, G. C., Heilbronn, E., Karlsson, K. A., and Samuelsson, B. E., 1979. The lipid composition of the electric organ of the ray Torpedo marmorata with specific reference to sulfatides and Na+-K+-ATPase, J. Lipid Res. 20:509–518.PubMedGoogle Scholar
- Harborne, J. B., 1977. Flavanoid sulfates: A new class of natural product of ecological significance in plants, in Progress in Phytochemistry, Vol. IV (L. Reinhold, J. B. Harborne, and T. Swain, eds.), Pergamon Press, Oxford, pp. 189–208.Google Scholar
- Harborne, J. B., and Mokhtari, N., 1977. Two sulfated anthroquinone derivatives in Rumex pulcher, Phytochemistry 16:1314–1315.Google Scholar
- Hardingham, T., 1981. Proteoglycans: Their structure, integration and molecular organization in cartilage, Biochem. Soc. Trans. 9:489–497.PubMedGoogle Scholar
- Hardingham, T., Burditt, L., and Ratcliffe, A., 1984. Studies on the synthesis, secretion and assembly of proteoglycan aggregates by chondrocytes, in Matrices and Cell Differentiation (R. B. Kemp and J. R. Hinchliffe, eds.), Alan R. Liss, New York, pp. 17–29.Google Scholar
- Hascall, V. C., 1977. Interaction of cartilage proteoglycans with hyaluronic acid, J. Supramolec. Struct. 7:101–120.Google Scholar
- Hascall, V. C., and Hascall, G. K., 1981. Proteoglycans, in Cell Biology of Extracellular Matrix (E. D. Hay, ed.), Plenum Publishing Corp., New York, pp. 39–63.Google Scholar
- Hascall, V. C., and Heinegard, D., 1975. The structure of cartilage proteoglycans, in Extracellular Matrix Influence on Gene Expressions (H. C. Slavkin and R. C. Gerulich, eds.), Academic Press, New York, pp. 423–434.Google Scholar
- Hatanaka, H., and Egami, F. J., 1976. Chondroitin sulfate incorporation from ascorbate 2-sulfate into sulfate by embryonic chick cartilage epiphyses, J. Biochem. (Tokyo) 80:1215.Google Scholar
- Hay, E. D. 1981. Extracellular matrix, in Discovery in Cell Biology (J. G. Gall, K. R. Porter, and P. Siekevitz, eds.), J. Cell Biol. 91:205s–223s.Google Scholar
- Hidaka, H., Nagatsu, T., and Yagi, K., 1967. A rapid and simple assay of serotonin sulfokinase activity, Anal. Biochem. 19:388–392.PubMedGoogle Scholar
- Holcenberg, J. S., Rosen, S. W., 1965. Enzymatic sulfation of steroids by bovine tissues, Arch. Biochem. Biophys. 110:551–557.PubMedGoogle Scholar
- Höök, M., Kjellen, L., Johansson, S., and Robinson, J., 1984. Cell-surface glycosaminog-lycans, Annu. Rev. Biochem. 53:847–869.PubMedGoogle Scholar
- Huttner, W. B., 1982. Sulphation of tyrosine residues—a widespread modification of proteins, Nature 299:273–276.PubMedGoogle Scholar
- Iida, K., 1963. Adenosine triphosphate-dependent incorporation of C14-glucose in charoninsulfuric acids by a cell-free extract of the mucous gland of Charonia lampas, J. Biochem. 53:37–42.PubMedGoogle Scholar
- Imperato, F., 1975. Branched trisaccharide in the betacyanins of Bougainvillea glabra, Phytochemistry 14:2526.Google Scholar
- Iozzo, R. V., 1984. Proteoglycans and neoplastic-mesenchymal cell interactions, Perspectives Pathol. 15:2–10.Google Scholar
- Jakoby, W. B., 1982. Aryl and hydroxysterone sulfotransferase, in Metabolic Basis of Detoxification: Metabolism of Functional Groups (W. B. Jakoby, J. R. Bend, and J. Caldwell, eds.), Academic Press, New York, pp. 13–20.Google Scholar
- Jakoby, W. B., Sekura, R. D., Lyon, E. S., Marcus, C. J., and Wang, J.-L., 1980. Sulfotransferases, in Enzymatic Basis of Detoxication II (W. B. Jakoby, ed.), Academic Press, New York, pp. 199–228.Google Scholar
- Jeanloz, R. W. (ed.), 1969. The Amino Sugars, Vol. 1A, Academic Press, New York.Google Scholar
- Jeanloz, R. W., and Balazs, E. A. (eds.), 1965 and 1966. The Amino Sugars, Vols. IIA and IIB, Academic Press, New York.Google Scholar
- John, R. A., and Fasella, P., 1969. The reaction of L-serine O-sulfate with aspartate aminotransferase, Biochemistry 8:4477–4482.PubMedGoogle Scholar
- Junqueira, L. C. V., and Montes, G. S., 1983. Pathology of collagen-proteoglycan interactions, Arch. Histol. Jpn. 46:589–629.PubMedGoogle Scholar
- Kandylis, K., 1983. Transfer of plasma sulfate from blood to rumen. A review, J. Dairy Sci. 66:2263–2270.PubMedGoogle Scholar
- Kates, M., and Deroo, P. W., 1973. Structure determination of the glycolipid sulfate from the extreme halophile Halobacterium cutirubrum, J. Lipid Res. 14:438–445.PubMedGoogle Scholar
- Keinanen, B. M., Nelson, K., Daniel, W. L., and Roque, J. M., 1983. Genetic analysis of murine arylsulfatase C and steroid sulfatase, Genetics 105:191–206.PubMedGoogle Scholar
- King, C. M., and Phillips, B., 1968. Enzyme-catalyzed reactions of the carcinogen N-hydroxy-2-fluorenylacetamide with nucleic acid, Science 159:1351–1353.PubMedGoogle Scholar
- King, C. M., and Phillips, B., 1969. N-hydroxy-2-fluorenylacetamide. Reaction of the carcinogen with guanosine, ribonucleic acid, deoxyribonucleic acid and protein, following enzymatic deacetylation or esterification, J. Biol. Chem. 244:6209–6216.PubMedGoogle Scholar
- Kirkwood, S., 1974. Unusual polysaccharides, Annu. Rev. Biochem. 43:401–417.PubMedGoogle Scholar
- Kjaer, A., 1960. Naturally derived isothiocyanates (mustard oils) and their parent glucosides, Fortschr. Chem. Org. Naturst. 18:122–176.Google Scholar
- Kjaer, A., 1974. Natural distribution of glucosinolates. Uniform group of sulfur containing glucosides, in Chemistry in Botanical Classification, Nobel Symposium 25 (G. Bendz and J. Santesson, eds.), Academic Press, New York and London, pp. 229–231.Google Scholar
- Kjaer, A., 1976. Glycosinolates in the Cruciferae, in The Biology and Chemistry of the Cruciferae (J. G. Vaughan, A. J. MacLeod, and B. M. G. Jones, eds.), Academic Press, London, p. 207.Google Scholar
- Kjaer, A., 1978. Glucosinolates and other naturally occurring O-sulfates, in Carbohydrate Sulfates (R. G. Schweiger, ed.), American Chemical Society, Washington, D.C., pp. 19–28.Google Scholar
- Kleine, T. O., 1981. Biosynthesis of proteoglycans: An approach to locate it in different membrane systems, Int. Rev. Connective Tissue Res. 9:27–98.Google Scholar
- Kraemar, P. N., 1971. Heparan sulfates of cultured cells. I. Membrane-associated and cell sap species in Chinese hamster cells, Biochemistry 10:1437–1445.Google Scholar
- Krijgsheld, K. R., and Mulder, G. J., 1982. The availability of inorganic sulfate as a rate-limiting factor in the sulfation of xenobiotics in mammals in vivo, in Sulfate Metabolism and Sulfate Conjugation (G. J. Mulder, J. Caldwell, G. M. J. Van Kemper, and R. J. Vonk, eds.), Taylor and Francis, London, pp. 59–66.Google Scholar
- Kuettner, K. E., and Kimura, J. H., 1985. Proteoglycans: An overview, J. Cell Biochem. 27:327–336.PubMedGoogle Scholar
- Lam, L., Silbert, J. E., and Rosenberg, R. D., 1976. The separation of active and inactive forms of heparin, Biochem. Biophys. Res. Commun. 69:570–577.PubMedGoogle Scholar
- Leaback, D. H., 1970. The metabolic hydrolysis of hexosaminidine linkages, in Metabolic Conjugation and Metabolic Hydrolysis, Vol. 2 (W. H. Fishman, ed.), Academic Press, New York, p. 443.Google Scholar
- Lee, R. W. H., and Huttner, W. B., 1983. Tyrosine-O-sulfated proteins of PC12 pheochromocytoma cells and their sulfation by a tyrosylprotein sulfotransferase, J. Biol. Chem. 258:11326–11334.PubMedGoogle Scholar
- Lindahl, U., 1976. Structure and biosynthesis of iduronic acid-containing glycosaminoglycans, in MTP Inter. Rev. Sci. Organic Chemistry Ser. Two, Carbohydrates, Vol. 7, (G. O. Aspinall, ed.), Butterworths, London, pp. 283–312.Google Scholar
- Lindahl, U., and Höök, M., 1978. Glycosaminoglycans and their binding to biological macromolecules, Annu. Rev. Biochem. 47:385.PubMedGoogle Scholar
- Lindahl, U., Höök, M., Bäckström, G. Jacobsson, I., Riesenfeld, J., Malmström, A., Rodén, L., and Feingold, D. S., 1977. Structure and biosynthesis of heparin-like polysaccharides, Fed. Proc. 36:19–24.PubMedGoogle Scholar
- Loh, H. H., Law, P. Y., Ostwald, T., Cho, T. M., and Way, E. L., 1978. Possible involvement of cerebroside sulfate in opiate receptor binding, Fed. Proc. 37:147–152.PubMedGoogle Scholar
- Long, W. F., and Williamson, F. B., 1983. Glycosaminoglycans and the control of cell surface proteinase activity, Med. Hypotheses 11:285–308.PubMedGoogle Scholar
- Lööf, L., and Wengle, B., 1978. Enzymatic sulphation of bile salts in human liver, Biochim. Biophys. Acta 530:451–460.PubMedGoogle Scholar
- Lotlikar, P. D., Scribner, J. D., Miller, J. A., and Miller, E. C., 1966. Reactions of esters of aromatic N-hydroxyamines and amides with methionine in vitro: A model for in vivo binding of amine carcinogens to protein, Life Sci. 5:1263–1269.Google Scholar
- Lyon, E. S., and Jakoby, W. B., 1980. The identity of alcohol sulfotransferases with hydroxysteroid sulfotransferases, Arch. Biochem. Biophys. 202:474–481.PubMedGoogle Scholar
- Lyon, E. S., and Jakoby, W. B., 1982. Arylamine N-methyltransferase, J. Biol. Chem. 257:7531–7535.PubMedGoogle Scholar
- MacDonald, I. A., Bokkenheuser, V. D., Winter, J., McLernon, A. M., and Mosbach, E. H., 1983. Degradation of steroids in the human gut, J. Lipid Res. 24:675–700.PubMedGoogle Scholar
- Mathews, M. B., 1975. Connective Tissue: Macromolecular Structure and Evolution, Springer-Verlag, New York.Google Scholar
- Matock, P., and Jones, J. G., 1970. Partial purification and properties of an enzyme from rat liver that catalyses the sulphation of L-tyrosyl derivatives, Biochem. J. 116:797–803.Google Scholar
- Matsui, M., 1982. Variability of androsterone metabolism in Wistar rats, with special reference to the sulfated and glucuronidated metabolites, in Sulfate Metabolism and Sulfate Conjugation (G. J. Mulder, J. Caldwell, G. M. T. Van Kempren, and R. J. Vonk, eds.), Taylor and Francis, London, pp. 181–188.Google Scholar
- McDuffie, N. M., 1979. Heparin: Structure, Cellular Function, and Clinical Applications, Academic Press, New York.Google Scholar
- Mead, C. G., and Finamore, F. J., 1969. The occurrence of ascorbic acid sulfate in the brine shrimp, Artemia salina, Biochemistry 8:2652–2655.Google Scholar
- Mehl, E., and Jatzkewitz, H., 1964. Ein Cerebrosidsulfatase aus Schweineniere, Hoppe-Seyler’s Z. Physiol. Chem. 339:260–276.PubMedGoogle Scholar
- Mehl, E., and Jatzkewitz, H., 1968. Cerebroside 3-sulphate as a physiological substrate for arylsulphatase A., Biochim. Biophys. Acta 151:619–627.PubMedGoogle Scholar
- Mian, A. J., and Percival, E., 1973. Carbohydrates of brown seaweeds, Himanthalia lorea, Bifurcaria bifurcata, and Pandina pavonia. 1. Extraction and fractionation, Carbohydr. Res. 26:133–146.Google Scholar
- Miller, E. C., 1978. Some current perspectives on chemical carcinogenesis in humans and experimental animals, Cancer Res. 38:1479–1496.PubMedGoogle Scholar
- Mohamram, M., Rucker, R. B., and Hodges, R. E., 1976. Formation in vitro of ascorbic acid 2-sulfate, Biochim. Biophys. Acta 437:305–310.PubMedGoogle Scholar
- Muir, H., and Hardingham, T. E., 1983. Structure of proteoglycans, in Biochemistry of Carbohydrates (W. H. Whelan, ed.), Butterworths, London, pp. 153–222.Google Scholar
- Mulder, G. J. (ed.), 1979. Detoxification or toxification? Modification of the toxicity of foreign compounds by conjugation in the liver, Trends Biochem. Sci. 4:86–90.Google Scholar
- Mulder, G. J., 1981. Sulfation of Drugs and Related Compounds, CRC Press, Boca Raton, Florida, 237 pp.Google Scholar
- Mulder, G. J., and Meerman, J. H., 1983. Sulfation and glucuronidation as competing pathways in the metabolism of hydroxamic acids: The role of N, O-sulfonation in chemical carcinogenesis of aromatic amines, Environ. Health Perspect. 49:27–32.PubMedGoogle Scholar
- Mulder, G. J., Caldwell, T., Van Kemper, G. M. J., and Vonk, R. J., 1982. Sulfate Metabolism and Sulfate Conjugation, Taylor and Francis, London, 311 pp.Google Scholar
- Mumma, R. O., and Verlangieri, A. J., 1972. Isolation of ascorbic acid 2-sulfate from selected rat organs, Biochim. Biophys. Acta 273:249.PubMedGoogle Scholar
- Nakanishi, Y., Tsuji, M., Habuchi, H., and Suzuki, S., 1979. Isolation of UDP-N-acetylgalactosamine-6-sulfate sulfatase from quail oviduct and its action on chondroitin sulfate, Biochem. Biophys. Res. Commun. 89:863–870.PubMedGoogle Scholar
- Nicholls, R. G., and Roy, A. B., 1971. Arylsulfatases, in The Enzymes, Vol. 5, 3rd Ed. (P. D. Boyer, ed.), Academic Press, New York, Chap. 2, pp. 21–42.Google Scholar
- Nissen, P., and Benson, A. A., 1961. Choline sulfate in higher plants, Science 134:1759.PubMedGoogle Scholar
- Ohl, V. S., and Litwack, G., 1977. Selective inhibition of glutathione S-transferase by 17 ß-estradiol disulfate, Arch. Biochem. Biophys. 180:186–190.PubMedGoogle Scholar
- Olivecrona, T., Bengtsson, G., Marklung, S.-E., Lindahl, U., and Höök, M., 1977. Heparin-lipoprotein interactions, Fed. Proc. 36:60–65.PubMedGoogle Scholar
- Orsi, B. A., and Spencer, B., 1964. Choline sulphokinase (sulphotransferase), J. Biochem. (Tokyo) 56:81–91.Google Scholar
- Percival, E., 1978a. Sulfated polysaccharide metabolized by the marine Clorophyceae, in Carbohydrate Sulfates (R. G. Schweiger, ed.), American Chemical Society, Washington, D.C., pp. 19–28.Google Scholar
- Percival, E., 1978b. Sulfated polysaccharides of the Rhodophyceae, in Carbohydrate Sulfates (R. G. Schweiger, ed.), American Chemical Society, Washington, D.C., pp. 213–224.Google Scholar
- Percival, E., and McDowell, R. M., 1967. Chemical and Enzymology of Marine Algal Poly saccharides, Academic Press, London, 176 pp.Google Scholar
- Phelps, C. F., 1975. The intercellular matrix, in Structure of Fibrous Biopolymers (E. D. T. Atkins and A. Keller, eds.), Butterworths, London, Colston Papers No. 26, pp. 53–64.Google Scholar
- Powell, G. M., and Roy, A. B., 1980. Sulfate conjugation, in Extrahepatic Metabolism of Drugs and Other Foreign Compounds (T. E. Gram, ed.), MTP-Press, Lancaster, pp. 389–426.Google Scholar
- Rees, D. A., 1969. Structure, conformation and mechanism in the formation of polysaccharide gels and networks, Adv. Carbohydr. Chem. Biochem. 24:267–332.PubMedGoogle Scholar
- Rees, D. A., and Welsh, E. J., 1977. Secondary and tertiary structure of polysaccharides in solutions and in gels, Angew. Chem. 89:228–239.Google Scholar
- Rein, G., Glover, V., and Sandler, M., 1981. Sulfate conjugation of biologically active monoamines and their metabolisms by human platelet phenolsulphotransferase, Clin. Chim. Acta 111:247–256.PubMedGoogle Scholar
- Renskers, K. J., Feor, K. D., and Roth, J. A., 1980. Sulfation of dopamine and other biogenic amines by human brain phenol sulfotransferase, J. Neurochem. 34:1362–1368.PubMedGoogle Scholar
- Riesenfeld, J., Höök, M., and Lindahl, U., 1982. Biosynthesis of heparan sulfate: Characterization of polysaccharides obtained with intact cells and with a cell-free system, J. Biol. Chem. 257:7050–7055.PubMedGoogle Scholar
- Rodén, L., 1980. Structure and metabolism of connective tissue proteoglycans, in The Biochemistry of Glycoproteins and Proteoglycans (W. J. Lennerz, ed.), Plenum Press, New York, pp. 207–231.Google Scholar
- Rodén, L., and Schwartz, N. B., 1975. Biosynthesis of connective tissue proteoglycans, in MTP Inter. Rev. Sci. Biochemistry Ser. One, Biochemistry of Carbohydrates, Vol. 5 (W. J. Whelan, ed.), University Park Press, Baltimore, pp. 96–152.Google Scholar
- Roy, A. B., 1960. The enzymic synthesis of aryl sulphamates, Biochem. J. 74:49–56.PubMedGoogle Scholar
- Roy, A. B., 1971a. The hydrolysis of sulfate esters, in The Enzymes, Vol. V., 3rd Ed. (P. D. Boyer, ed.), Academic Press, New York, pp. 1–19.Google Scholar
- Roy, A. B., 1971b. Sulfate conjugation enzymes, in Handbuch der Experimentellen Pharmakologie (B. B. Brodie and J. Gillette, eds.), Springer-Verlag, Berlin, pp. 536–563.Google Scholar
- Roy, A. B., 1975. Ascorbic acid 2-sulphate: A substrate for mammalian arylsulphatases, Biochim. Biophys. Acta 377:356–363.PubMedGoogle Scholar
- Roy, A. B., 1981. Sulfotransferase, in Sulfation of Drugs and Related Compounds (G. J. Mulder, ed.), CRC Press, Boca Raton, Florida, pp. 83–130.Google Scholar
- Sandler, M., and Usdin, E. (eds.), 1981. Phenolsulfotransferase in Mental Health Research, MacMillan and Co., London, 225 pp.Google Scholar
- Schweiger, R. G., 1978. Carbohydrate Sulfates, American Chemical Society, Washington, D.C., 294 pp.Google Scholar
- Sekura, R. D., and Jakoby, W. B., 1979. Phenol sulfotransferases, J. Biol. Chem. 254:5658–5663.PubMedGoogle Scholar
- Sekura, R. D., and Jakoby, W. B., 1981. Aryl sulfotransferase IV from rat liver, Arch. Biochem. Chem. 211:352–359.Google Scholar
- Sharon, N., 1975. Complex Carbohydrates: Their Chemistry, Biosynthesis and Functioning, Addison-Wesley, Reading, Massachusetts, 258 pp.Google Scholar
- Singer, S. S., and Bruns, L., 1978. Enzymatic sulfation of steroids. VII. Hepatic Cortisol sulfation and glucocorticoid sulfotransferases in old and young male rats, Exp. Gerontol. 13:425–429.PubMedGoogle Scholar
- Singer, S. S., Giera, D., Johnson, J., and Sylvester, S., 1976. Enzymatic sulfation of steroids. I. The enzymatic basis for the sex difference in Cortisol sulfation by rat liver preparations, Endocrinology 98:963–974.PubMedGoogle Scholar
- Singer, S. S., Hess, E., and Sylvester, S., 1977. Hepatic Cortisol sulfotransferase activity in several types of hypertension in male rats, Biochem. Pharmacol. 26:1033–1038.PubMedGoogle Scholar
- Singer, S. S., Federspiel, M. J., Green, J., Lewis, W. G., Martin, V., Witt, K. R., and Tappel, J., 1982. Enzymatic sulfation of steroids. XV. Studies differentiating between rat liver androgen, estrogen, bile acid, glucocorticoid and phenol sulfotransferases, Biochim. Biophys. Acta 700:110–117.PubMedGoogle Scholar
- Stone, A. L., 1969. Conformations of hexose polysaccharides in solution, in Structure and Stability of Biological Macromolecules (S. N. Timasheff and G. D. Fasman, eds.), Marcel Dekker, New York, 353 pp.Google Scholar
- Takagi, M., Parmley, R. T., Denys, F. R., Yagasaki, H., and Toda, Y., 1984. Ultrastructural cytochemistry of proteoglycans associated with calcification of shark cartilage, Anat. Rec. 208:149–158.PubMedGoogle Scholar
- Tallan, H. H., Bella, S. T., Stein, W. H., and Moore, S., 1955. Tyrosine-O-sulfate as a constituent of normal human urine, J. Biol. Chem. 217:703–708.PubMedGoogle Scholar
- Timpl, R., Fujiwara, S., Dziadek, M., Aumailley, M., Weber, S., and Engel, J., 1984. Laminin, proteoglycan, nidogen and collagen IV: Structural models and molecular interactions, Ciba Found. Symp. 108:25–43.PubMedGoogle Scholar
- Unsworth, C. D., Hughes, J., and Morley, J. S., 1982. O-Sulphated leu-enkephalin in brain, Nature 295:519.PubMedGoogle Scholar
- Vannucchi, S., del Rosso, M., Cella, C., Urbano, P., and Chiarugi, V., 1978. Surface glycosaminoglycans and calcium distribution in 3T3 cells, Biochem. J. 170:185–187.PubMedGoogle Scholar
- Watkins, J. B., 1983. Placental transport: Bile acid conjugation and sulfation in the fetus, J. Pediat. Gastroenterol. Nutr. 2:365–373.Google Scholar
- Weisburger, J. H., Yamamoto, R. S., Williams, G. M., Grantham, P. H., Matsushima, T., and Weisburger, E. K., 1972. On the sulfate ester of N-hydroxy-N-2-fluorenylacetamide as a key ultimate hepatocarcinogen in the rat, Cancer Res. 32:491.PubMedGoogle Scholar
- Williams, R. T., 1979. The metabolism of phenols—the sulfate conjugation, in Detoxication Mechanisms, Wiley, New York, 288 pp.Google Scholar
- Wolfrom, M. L., and Shen Han, T.-M., 1959. The sulfonation of chitosan, J. Am. Chem. Soc. 81:1764–1766.Google Scholar
- Wong, K. P., 1982. Sulphate conjugation of amines and their metabolites, in Sulfate Metabolism and Sulfate Conjugation (G. J. Mulder, J. Caldwell, G. M. T. Van Kemper, and R. J. Vonk, eds.), Taylor and Francis, London, pp. 85–92.Google Scholar