The Metabolism and Functions of Methionine

  • Ryan J. Huxtable
Part of the Biochemistry of the Elements book series (BOTE, volume 6)

Abstract

Met has three ubiquitous functions: it is utilized in protein synthesis, and, via its metabolite, AdoMet, it serves as a methyl donor in transmethylation reactions and as an aminopropyl donor in the synthesis of polyamines. In addition, Met provides sulfur for Cys synthesis in organisms incapable of fixing inorganic sulfur. Met has other, more limited, functions. In bacteria, it initiates protein synthesis via its N-formyl metabolite, and, in plants, it is a precursor of ethylene, a fruit-ripening hormone.

Keywords

Ornithine Decarboxylase Polyamine Biosynthesis Polyamine Synthesis Methionine Metabolism Guanidinoacetic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abe, H., Uchiyama, M., Tanaka, Y., and Saito, H., 1976. Structure of discadenine, a spore germination inhibitor from cellular slime-mold, Dictyostelium discoideum, Tetrahedron Lett. 42:3807–3810.CrossRefGoogle Scholar
  2. Abe, H., Hashimoto, K., and Uchiyama, M., 1981. Discadenine distribution in cellular slime-molds and its inhibitor activity on spore germination, Agric. Biol. Chem. 45:1295–1296.CrossRefGoogle Scholar
  3. Abraham, A. K., and Pihl, A., 1981. Role of polyamines in macromolecular synthesis, Trends Biochem. Sci. 6:106–107.CrossRefGoogle Scholar
  4. Adams, D. O., and Yang, S. F., 1979. Ethylene biosynthesis—identification of 1-amino cyclopropane-1-carboxylic acid as an intermediate in the conversion of methionine to ethylene, Proc. Natl. Acad. Sci. USA 76:170–174.PubMedCrossRefGoogle Scholar
  5. Adams, D. O., and Yang, S. F., 1981. Ethylene, the gaseous plant hormone: mechanism and regulation of biosynthesis, Trends Biochem. Sci. 6:161–164.CrossRefGoogle Scholar
  6. Aleksijevic, A., Grove, J., and Schuber, F., 1979. Studies in polyamine biosynthesis in Euglena gracilis, Biochim. Biophys. Acta 565:199–207.PubMedCrossRefGoogle Scholar
  7. Alhonen-Hongisto, L., 1980. Regulation of S-adenosylmethionine decarboxylase by polyamines in Ehrlich ascites-carcinoma cells grown in culture, Biochem. J. 190:747–754.PubMedGoogle Scholar
  8. Amess, J. A. L., Burman, J. F., Rees, G. M., Nancekievill, D. G., and Mollin, D. L., 1978. Megaloblastic haemopoiesis in patients receiving nitrous oxide, Lancet 2:339–342.PubMedCrossRefGoogle Scholar
  9. Amrhein, N., Schneebeck, D., Skorupka, H., and Tophof, S., 1981. Identification of a major metabolite of the ethylene precursor 1-aminocyclopropane-l-carboxylic acid in higher plants, Naturwissenchaften 68:619–620.CrossRefGoogle Scholar
  10. Andersson, G., Christensson, E., and Heby, O., 1976. Increase in amount of nuclear-RNA in liver of ascites tumor-bearing mice, Acta Path. Microbiol. Scand, Sect. A 84:225–234.Google Scholar
  11. Anonymous, 1983. Have the pteroylpolyglutamates a regulatory function? Nutr. Rev. 6:190-192.Google Scholar
  12. Apelbaum, A., Burgoon, A. C., Anderson, J. D., Solomos, T., and Lieberman, M., 1981. Some characteristics of the system converting l-aminocyclopropane-l-carboxylic acid to ethylene, Plant Physiol. 67:80–84.PubMedCrossRefGoogle Scholar
  13. Arber, W., 1974. DNA modification and restriction progress, Prog. Nucl. Acid Res. Mol. Biol. 14:1–37.CrossRefGoogle Scholar
  14. Atkins, J. F., Lewis, J. B., Anderson, C. W., and Gesteland, R. F., 1975. Enhanced differential synthesis of proteins in a mammalian cell-free system by addition of polyamines, J. Biol. Chem. 250:5688–5695.PubMedGoogle Scholar
  15. Atkinson, D. E., 1977. Cellular Energy Metabolism and Its Regulation, Academic Press, New York, 75 pp.Google Scholar
  16. Audubert F., and Vance, D. E., 1983. Pitfalls and problems in studies on the methylation of phosphatidylethanolamine, J. Biol. Chem. 258:10695–10701.PubMedGoogle Scholar
  17. Axelrod, J., Wurtman, R. J., and Snyder, S. H., 1965. Control of hydroxyindole O-methyltransferase in the rat pineal gland by environmental lighting, J. Biol. Chem. 240:949–954.PubMedGoogle Scholar
  18. Bachrach, U., 1973. Function of Naturally Occurring Polyamines, Academic Press, New York, 212 pp.Google Scholar
  19. Bachrach, U., Kaye, A., and Chayen, R. (eds.), 1983. Advances in Polyamine Research, Vol. 4, Raven, New York, 808 pp.Google Scholar
  20. Backlund, P. S. Jr., and Smith, R. A., 1981. Methionine synthesis from 5′-methylthioadenosine in rat liver, J. Biol. Chem. 256:1533–1535.PubMedGoogle Scholar
  21. Backlund, P. S., and Smith, R. A., 1982. Methionine synthesis from 5′-methylthioadenosine in rat liver, in Biochemistry of S-Adenosylmethionine and Related Compounds (E. Usdin, R. T. Borchardt, and C. R. Creveling, eds.), MacMillan Press, London, pp. 723–728.Google Scholar
  22. Backlund, P. S., Jr., Chang, C. P., and Smith, R. A., 1982. Identification of 2-keto-4-methylthiobutyrate as an intermediate compound in methionine synthesis from 5′-meth-ylthiodenosine, J. Biol. Chem. 257:4196–4202.PubMedGoogle Scholar
  23. Bagliono, C., and Colombo, B., 1975. Protein synthesis, in Metabolic Pathways, Vol. 4, Third Ed., (D. M. Greenberg, ed.), Academic Press, New York, pp. 278–352.Google Scholar
  24. Baldessarini, R. J., 1975. Biological transmethylation involving S-adenosylmethionine: Development of assay methods and implications for neuropsychiatry, Int. Rev. Neurobiol. 18:41–67.PubMedCrossRefGoogle Scholar
  25. Balish, E., and Shapiro, S. K., 1967. Methionine biosynthesis in Escherichia coli—induction and repression of methylmethionine (or adenosylmethionine)-homocysteine methyltransferase, Arch. Biochem. Biophys. 119:62-67. Barak, A. J., and Tuma, D. J., 1983. Betaine, metabolic by-product or vital methylating agent? Life Sci. 32:771–774.Google Scholar
  26. Barak, A. J., Baker, H., and Tuma, D. J., 1981. Influence of ethanol on in vivo levels of hepatic methylators betaine and N-5-methyltetrahydrofolate in the rat, IRCS Med. Sci.: Biochem. 9:527–528.Google Scholar
  27. Barber, J. R., and Clarke, S., 1984. Inhibition of protein carboxyl methylation by S-adenosyl-L-homocy steine in intact erythrocytes. Physiological consequences, J. Biol. Chem. 259:7115–7122.PubMedGoogle Scholar
  28. Baugh, C. M., Braverman, E., and Nair, M. G., 1974. The identification of poly-gamma-glutamyl chain lengths in bacterial folates. Biochemistry 13:4952–4957.PubMedCrossRefGoogle Scholar
  29. Baur, A. H., and Yang, S. F., 1972. Formation of ethionine from homocysteine and of S-methylmethionine in apple tissue, Phytoehe mistry 11:2503–2505.CrossRefGoogle Scholar
  30. Baxter, C., and Coscia, C. J., 1973. In vitro synthesis of spermidine in the higher plant, Vinea rosea, Biochem. Biophys. Res. Commun. 54:147–154.PubMedCrossRefGoogle Scholar
  31. Beaven, M. A., 1982. Factors regulating availability of histamine at tissue receptors, in Pharmacology of Histamine Receptor (M. Parsons and C. R. Ganellin, eds.), John Wright and Son, London, pp. 103–145.Google Scholar
  32. Benevenga, N. J., 1974a. Evidence for alternative pathways of methionine catabolism, in Advances in Nutritional Research, Vol. 6 (H. H. Draper, ed.), Plenum Press, New York, London, pp. 1–18.Google Scholar
  33. Benevenga, N. J., 1974b. Toxicities of methionine and other amino acids, J. Agric. Food Chem. 22:2–9.PubMedCrossRefGoogle Scholar
  34. Benevenga, N. J., and Egan, A. R., 1983. Quantitative aspects of methionine metabolism, in Sulfur Amino Acids: Biochemical and Clinical Aspects (K. Kuriyama, R. J. Huxtable, and H. Iwata, eds.), Alan R. Liss Inc., New York, pp. 327–341.Google Scholar
  35. Benevenga, N. J., and Harper, A. E., 1967. Alleviation of methionine and homocystine toxicity in the rat, J. Nutr. 93:44–52.PubMedGoogle Scholar
  36. Benevenga, N. J., Yeh, M.-H., and Lalich, J. J., 1976. Growth depression and tissue reaction to consumption of excess dietary methionine and S-methyl-L-cysteine, J. Nutr. 106:1714–1720.PubMedGoogle Scholar
  37. Bills, D. D., and Keenan, T. W., 1968. Dimethyl sulfide and its precursors in sweet corn, J. Agric. Food Chem. 16:643–668.CrossRefGoogle Scholar
  38. Bjornstad, P. and Bremer, J., 1966. In vivo studies on pathways for biosynthesis of lecithin in rat, J. Lipid Res. 7:38–45.PubMedGoogle Scholar
  39. Bowman, W. H., Tabor, C. W., and Tabor, H., 1973. Spermidine biosynthesis: Purification and properties of propylamine transferase from Escherichia coli, J. Biol. Chem. 248:2480–2486.PubMedGoogle Scholar
  40. Bremer, K., and Greenberg, D. M., 1961. Methyl transferring enzyme system of microsomes in the biosynthesis of lecithin (phosphatidylcholine), Biochim. Biophys. Acta 46:205–216.CrossRefGoogle Scholar
  41. Brody, T., Watson, J. E., and Stokstad, E. L. R., 1982. Folate pentaglutamate and folate hexaglutamate mediated one-carbon metabolism, Biochemistry 21:;276–282.PubMedCrossRefGoogle Scholar
  42. Brown, F. C., and Gordon, P. H., 1971. Cystathionine synthase from rat liver. Partial purification and properties, Can. J. Biochem. 49:484–491.PubMedCrossRefGoogle Scholar
  43. Brown, J. P., Davidson, G. E., and Scott, J. M., 1974. The identification of the forms of folate found in the liver, kidney, and intestine of the monkey and their biosynthesis from exogenous pteroylglutamate (folic acid), Biochem. Biophys. Acta 343:78–88.PubMedCrossRefGoogle Scholar
  44. Buehring, K. U., Tamura, T., and Stokstad, E. L. R., 1974. Folate coenzymes of Lactobacillus casei and Streptococcus faecalis, J. Biol. Chem. 249:1081–1089.PubMedGoogle Scholar
  45. Burke, G. T., Mangum, J. H., and Brodie, J. D., 1971. Mechanism of mammalian cobalamindependent methionine biosynthesis, Biochemistry 10:3079–3085.PubMedCrossRefGoogle Scholar
  46. Burns, R. A., and Milner, J. A., 1981. Sulfur amino acid requirements of immature beagle dogs, J. Nutr. 111:2117–2124.Google Scholar
  47. Cacciapuoti, G., Oliva, A., and Zappia, V., 1978. Studies on phosphate-activated 5′-methylthioadenosine nucleosidase from human placenta, Int. J. Biochem. 9:35–41.PubMedCrossRefGoogle Scholar
  48. Caldarera, C. M., Barbiroli, B., and Moruzzi, G., 1965. Polyamines and nucleic acids during development of chick embryo, Biochem. J. 97:84–88.PubMedGoogle Scholar
  49. Caldarera, C. M., Zappia, V., and Bachrach, U. (eds.), 1981. Advances in Poly amine Research, Vol. 3, Raven, New York, 493 pp.Google Scholar
  50. Canellakis, E. S., Viceps-Madore, D., Kyriakidis, D. A., and Heller, J. S., 1979. The regulation and function of ornithine decarboxylase and of the polyamines, Curr. Top. Cell.Regul. 15:155–202.PubMedGoogle Scholar
  51. Carteni-Farina, M., Oliva, A., Romeo, G., Napolitano, G., DeRosa, M., Gambacorta, A., and Zappia, V., 1979. 5′-Methylthioadenosine phosphorylase from Caldariella acidophila — purification and properties, Eur. J. Biochem. 101:317–324.CrossRefGoogle Scholar
  52. Case, G. L., and Benevenga, N. J., 1977. Significance of formate as an intermediate in the oxidation of the methionine, S-methyl-L-cysteine and sarcosine methyl carbons to CO2 in the rat, J. Nutr. 107:1665–1676.PubMedGoogle Scholar
  53. Case, G. L., Mitchell, A. D., Harper, A. E., and Benevenga, N. J., 1976. Significance of choline synthesis in the oxidation of the methionine methyl group in rats, J. Nutr. 106:735–747.PubMedGoogle Scholar
  54. Challenger, F., and Hayward, B. J., 1954. The occurrence of a methylsulphonium derivative of methionine (α-amino-dimethyl-γ-butyrothetin), Chem. Ind. (London) 25:729–730.Google Scholar
  55. Chapman, S. K., Martin, M., Hoover, M. S., and Chiou, C. Y., 1978. Ornithine decarboxylase activity and growth of neuroblastoma-cells—effects of bromoacetylcholine, bromoacetate and 1,3-diaminopropane, Biochem. Pharmacol. 27:717–721.PubMedCrossRefGoogle Scholar
  56. Chen, S., Zieve, L., and Mahadevan, V., 1970. Mercaptans and dimethyl sulfide in the breath of patients with cirrhosis of the liver, J. Lab. Clin. Med. 75:628–635.PubMedGoogle Scholar
  57. Cheng, F. W., Shane, B., and Stokstad, E. L. R., 1975. Pentaglutamate derivatives of folate as substrates for rat liver tetrahydropteroylglutamate methyltransferase and 5,10-methylenetetrahydrofolate reductase, Can. J. Biochem. 53:1020–1027.CrossRefGoogle Scholar
  58. Cichowicz, D. J., Foo, S. K., and Shane, B., 1981. Folylpoly-γ-glutamate synthesis by bacteria and mammalian cells, Mol. Cell. Biochem. 39:209–228.PubMedCrossRefGoogle Scholar
  59. Cohen, H. P., Choitz, H. C., and Berg, C. P., 1958. Response to diets high in methionine and related compounds, J. Nutr. 65:555–569.Google Scholar
  60. Cohen, S. S., 1971. Introduction to the Polyamines, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 179 pp.Google Scholar
  61. Cohen, S. S., and Raina, A., 1967. Some interrelations of natural polyamines and nucleic acids in growing and virus-infected bacteria, in Organizational Biosynthesis (H. J. Vogel, J. O. Lampen, and V. Bryson, eds.), Academic Press, New York, pp. 157–182.CrossRefGoogle Scholar
  62. Cohen, S. S., Hoffner, N., Jansen, M., Moore, M., and Raina, A., 1967. Polyamines RNA synthesis and streptomycin lethality in a relaxed mutant of E. coli strain 15 tau, Proc. Natl. Acad. Sci. USA 57:721–728.PubMedCrossRefGoogle Scholar
  63. Cohen, S. S., O’Malley, B. W., and Stastney, M., 1970. Estrogenic induction of ornithine decarboxylase in vivo and in vitro, Science 170:336–338.PubMedCrossRefGoogle Scholar
  64. Cohn, M. S., Tabor, C. W., and Tabor, H., 1979. Mutants of Saccharomyces cerevisiae defective in the biosynthesis of polyamines from S-adenosylethionine, in Transmethylation (E. Usdin, R. T. Borchardt, and C. R. Creveling, eds.), Elsevier/North-Holland, New York, pp. 91–93.Google Scholar
  65. Cohn, M. S., Tabor, C. W., and Tabor, H., 1980. Regulatory mutations affecting ornithine decarboxylase activity in Saccharomyces cerevisiae, J. Bacteriol. 142:791–799.PubMedGoogle Scholar
  66. Compere, S. J., and Palmiter, R. D., 1981. DNA methylation controls the inducibility of the mouse metallothionein-l gene in lymphoid cells, Cell 25:233–240.PubMedCrossRefGoogle Scholar
  67. Connett, R. J., and Kirschner, N., 1970. Purification and properties of bovine phenylethanolamine N-methyltransferase, J. Biol. Chem. 245:329–334.PubMedGoogle Scholar
  68. Cooper, A. J. L., 1977. Asparagine transaminase from rat liver, J. Biol. Chem. 252:2032–2038.PubMedGoogle Scholar
  69. Cooper, A. J. L., and Meister, A., 1972. Isolation and properties of highly purified glutamine transaminase, Biochemistry 11:661–671.PubMedCrossRefGoogle Scholar
  70. Cooper, A. J. L., and Meister, A., 1974. Isolation and properties of a new glutamine transaminase from rat kidney, J. Biol. Chem. 249:2554–2561.Google Scholar
  71. Cooper, A. J. L., and Meister, A., 1977. Glutamine transaminase-ω-amidase pathway, CRC Crit. Rev. Biochem. 4:281–303.PubMedCrossRefGoogle Scholar
  72. Cooper, A. J. L., and Meister, A., 1981. Comparative studies of glutamine transaminases from rat tissues, Comp. Biochem. Physiol. 69B:137–145.Google Scholar
  73. Cornforth, J. W., Reichard, S. A., Talalay, P., Carrell, H. L., and Glusker, J. P., 1977. Determination of absolute configuration at sulfonium center of S-adenosylmethionine—correlation with absolute configuration of diasteromeric S-carboxymethyl-(S)-methionine salts, J. Am. Chem. Soc. 99:7292–7300.PubMedCrossRefGoogle Scholar
  74. Cornforth, J. W., Carrell, H. L., Glusker, J. P., and Talalay, P., 1978. The absolute configuration of the sulfonium center of S-adenosyl-L-methionine, in Transmethylation (E. Usdin, R. T. Borchardt, and C. R. Creveling, eds.), North-Holland, Amsterdam, pp. 19–26.Google Scholar
  75. Covey, J. M., 1980. Polyglutamate derivatives of folic acid coenzymes and methotrexate, Life Sci. 26:665–678.PubMedCrossRefGoogle Scholar
  76. Coward, J. K., Chello, P. L., Cashmore, A. R., Parameswaran, K. N., DeAngelis, L. M., and Bertino, J. R., 1975. 5-methyl-5,6,7,8-tetrahydropteroyl oligo-γ-L-glutamates—synthesis and kinetic studies with methionine synthetase from bovine brain. Biochemistry 14:1548–1552.PubMedCrossRefGoogle Scholar
  77. Das, K. C., and Herbert, V., 1976. Vitamin B12-folate interrelations, Clin. Haematol. 5:697–725.PubMedGoogle Scholar
  78. Deacon, R., Lumb, M., Muir, M., Perry, J., and Chanarin, I., 1979. Studies on cobalamin and folate metabolism in rats exposed to nitrous oxide (N2O), in Vitamin B 12 (B. Zagalak and W. Friedrich, eds.), DeGryter, New York, pp. 1055–1060.Google Scholar
  79. De la Haba, G., and Cantoni, G. L., 1959. The enzymatic synthesis of S-adenosyl-L-homocysteine from adenosine and homocysteine, J. Biol. Chem. 234:603–608.Google Scholar
  80. DeRosa, M., Gambacorta, A., and Bu’lock, J. D., 1975. Extremely thermophilic acidophilic bacteria convergent with Sulfolobus acidocaldarius, J. Gen. Microbiol. 86:156–164.CrossRefGoogle Scholar
  81. DeRosa, S., DeRosa, A., Gambacorta, A., Carteni-Farina, M., and Zappia, V., 1978. The biosynthetic pathway of new polyamines in Caldariella acidophila, Biochem. J. 176:1–7.Google Scholar
  82. Dice, J. F., and Goldberg, A. L., 1975. Relationship between in vivo degradative rates and isoelectric points of proteins, Proc. Natl. Acad. Sci. USA 72:3893–3897.PubMedCrossRefGoogle Scholar
  83. Dice, J. F., Dehlinger, P. J., and Schimke, R. T., 1973. Studies on the correlation between size and relative degradation rate of soluble proteins, J. Biol. Chem. 248:4220–4228.Google Scholar
  84. Dickerman, H., Steers, E., Jr., Redfield, B. G., and Weissbach, H., 1966. Formylation of Escherichia coli methionyl-sRNA, Cold Spring Harbor Symp. Quant. Biol. 31:287–288.PubMedCrossRefGoogle Scholar
  85. Diliberto, E. J., Jr., O’Dea, R. F., and Viveros, O. H., 1979. The role of protein carboxymethylase in secretory and chemotactic eukaryotic cells, in Transmethylation (E. Usdin, R. T. Borchardt, and C. R. Creveling, eds.), Elsevier/North-Holland, New York, pp. 529–538.Google Scholar
  86. Dillon, M. J., England, J. M., Gompertz, D., Goodney, P. A., Grant, D. B., Hussein, H. A. A., Linnell, J. C., Matthews, D. M., Mudd, S. H., Newns, G. H., Seakins, J. W. T., Uhlendorf, B. W., and Wise, I. J., 1974. Mental retardation, megaloblastic anemia, methylmalonic aciduria and abnormal homocysteine metabolism due to an error in vitamin B12 metabolism, Clin. Sci. Mol. Med. 41:43–61.Google Scholar
  87. DiPerri, B., Calderini, G., Battistella, A., Raciti, R., and Toffano, G., 1983. Phospholipid methylation increases [3H]diazepam and [3H]GABA binding in membrane preparations of rat cerebellum, J. Neurochem. 41:302–308.CrossRefGoogle Scholar
  88. Dolnick, B. J., and Cheng, V-C., 1978. Human thymidylate synthetase. II. Derivatives of pteroylmono-and polyglutamates as substrates and inhibitors, J. Biol. Chem. 253:3563–3567.PubMedGoogle Scholar
  89. Duerre, J. A., 1982. Regulation of S-adenosylmethionine and S-adenosylhomocysteine levels in isolated rat liver, in Biochemistry of S-Adenosylmethionine and Related Compounds (E. Usdin, R. T. Borchardt, and C. R. Creveling, eds.), MacMillan Press, London, pp. 595–602.Google Scholar
  90. Duffy, P. E., and Kremzner, L. T., 1977. Ornithine decarboxylase activity and polyamines in relation to aging of human fibroblasts, Exp. Cell Res. 108:435–440.PubMedCrossRefGoogle Scholar
  91. Ehrlich, M., and Wang, R.Y.-H., 1981. 5-Methylcytosine in eukaryotic DNA, Science 212:1350–1357.PubMedCrossRefGoogle Scholar
  92. Eiden, L. E., Borchardt, R. T., and Rutledge, C. O., 1979. Protein carboxymethylation in neurosecretory processes, in Transmethylation (E. Usdin, R. T. Borchardt, and C. R. Creveling, eds.), Elsevier/North-Holland, New York, pp. 539–546.Google Scholar
  93. Eisenberg, M. A., and Stoner, G. L., 1971. Biosynthesis of 7,8-diaminopelargonic acid, a biotin intermediate, from 7-keto-8-aminopelargonic acid and S-adenosyl-L-methionine, J.Bacteriol. 108:1135–1140.PubMedGoogle Scholar
  94. Eloranta, T. O., 1977. Tissue distribution of S-adenosylmethionine and S-adenosylhomocysteine in the rat. Biochim. J. 166:521–529.Google Scholar
  95. Eloranta, T. O., and Raina, A. M., 1977. S-Adenosylmethionine metabolism and its relation to polyamine synthesis in rat liver. Effect of nutritional state, adrenal function, some drugs and partial hepatectomy, Biochem. J. 168:179–185.PubMedGoogle Scholar
  96. Eto, I., and Krumdieck, C. L., 1982. Changes in the chain length of folylpolyglutamates during liver regeneration, Life Sci. 30:183–189.CrossRefPubMedGoogle Scholar
  97. Everett, G. B., Mitchell, A. D., and Benevenga, N.J., 1979. Methionine transamination and catabolism in Vitamin B-6 deficient rats, J. Nutr. 109:597–605.PubMedGoogle Scholar
  98. Fausto, N., 1972. RNA metabolism in isolated perfused normal and regenerating livers: Polyamine effects, Biochim. Biophys. Acta 281:543–553.PubMedCrossRefGoogle Scholar
  99. Ferger, M. F., and du Vigneaud, V., 1950. Oxidation in vivo of the methyl groups of choline, betaine, dimethylthetin, and dimethyl-ß-propiothetin, J. Biol. Chem. 185:53–57.PubMedGoogle Scholar
  100. Ferro, A. J., Barrett, A., and Shapiro, S. K., 1976. Kinetic properties and the effect of substrate analogues on 5′-methylthioadenosine nucleosidase from Escherichia coli, Biochim. Biophys. Acta 438:487–494.PubMedCrossRefGoogle Scholar
  101. Fillingame, R. H., Jorstad, C. M., and Morris, D. R., 1975. Increased cellular levels of spermidine or spermine are required for optimal DNA synthesis in lymphocytes activated by concanavalin A, Proc. Natl. Acad. Sci. USA 72:4042–4045.PubMedCrossRefGoogle Scholar
  102. Finkelstein, J. D., 1971. Methionine metabolism in mammals, in Inherited Disorders of Sulphur Metabolism (N. A. J. Carson and D. N. Raine, eds.), Churchill Livingstone, London, pp. 1–13.Google Scholar
  103. Finkelstein, J. D., 1974. Methionine metabolism in mammals: The biochemical basis for homocystinuria, Metabolism 23:387–398.PubMedCrossRefGoogle Scholar
  104. Finkelstein, J. D., 1975. Enzyme defects in sulfur amino acid metabolism in man, in Metabolic Pathways, Third Ed., Vol. VII, Metabolism of Sulfur Compounds (D. M. Greenberg, ed.), Academic Press, New York, pp. 547–597.Google Scholar
  105. Finkelstein, J. D., 1978. Regulation of methionine metabolism in mammals, in Transmethylation (E. Usdin, R. T. Borchardt, and C. R. Creveling, eds.), North-Holland, Amsterdam, pp. 49–58.Google Scholar
  106. Finkelstein, J. D., and Harris, B., 1973. Methionine metabolism in mammals: Synthesis of S-adenosylhomocysteine in rat tissues, Arch. Biochem. Biophys. 159:160–165.PubMedCrossRefGoogle Scholar
  107. Finkelstein, J. D., Harris, B. J., and Kyle, W. E., 1972. Methionine metabolism in mammals: Kinetic study of betaine-homocysteine methyltransferase, Arch. Biochem. Biophys. 153:320–324.PubMedCrossRefGoogle Scholar
  108. Finkelstein, J. D., Kyle, W. E., and Harris, B. J., 1974. Methionine metabolism in mammals: Regulatory effects of S-adenosylhomocysteine, Arch. Biochem. Biophys. 165:774–779.PubMedCrossRefGoogle Scholar
  109. Finkelstein, J. D., Kyle, W. E., and Martin, J. J., 1975a. Abnormal methionine adenosyltransferase in hypermethioninemia, Biochem. Biophys. Res. Commun. 66:1491–1497.PubMedCrossRefGoogle Scholar
  110. Finkelstein, J. D., Kyle, W. E., Martin, J. J., and Pick, A. M., 1975b. Activation of cystathionine synthase by adenosylmethionine and adenosylethionine, Biochem. Biophys. Res. Commun. 66:81–87.PubMedCrossRefGoogle Scholar
  111. Fitch, C. D., Jellinek, M., and Mueller, E. J., 1974. Experimental depletion of creatine and phosphocreatine from skeletal muscle, J. Biol. Chem. 249:1060–1063.PubMedGoogle Scholar
  112. Flavin, M., 1975. Methionine biosynthesis, in Metabolic Pathways, Third Ed., Vol. VII, Metabolism of Sulfur Compounds (D. M. Greenberg, ed.), Academic Press, New York, pp. 457–503.Google Scholar
  113. Foo, S. K., and Shane, B., 1982. Regulation of folylpoly-γ-glutamate synthesis in mammalian cells: in vivo and in vitro synthesis of pteroylpoly-y-glutamate by Chinese hamster ovary cells, J. Biol. Chem. 257:13587–13592.PubMedGoogle Scholar
  114. Freeman, J. M., Finkelstein, J. D., and Mudd, S. H., 1975. Folate responsive homocystinuria and schizophrenia. A defect in methylation due to deficient 5,10-methylenetrahydrofolate reductase activity, N. Engl. J. Med. 292:491.CrossRefGoogle Scholar
  115. French, S. W., 1966. Effect of chronic ethanol ingestion on liver enzyme changes induced by thiamine, riboflavin pyridoxine or choline deficiency, J. Nutr. 88:291–302.PubMedGoogle Scholar
  116. Friedkin, M., Plante, L. T., Crawford, E. J., and Crumm, M., 1975. Inhibition of thymidylate synthetase and dihydrofolate reductase by naturally occurring oligoglutamate derivatives of folic acid, J. Biol. Chem. 250:5614.PubMedGoogle Scholar
  117. Fujii, K., 1979. Folate and cobalamin interrelationships in mouse leukemia L1210 cells, in Chemistry and Biology of Pteridines (R. L. Kisliuk and G. M. Brown, eds.), Elsevier, New York, pp. 297–302.Google Scholar
  118. Gagnon, C., 1979. Presence of a protein methylesterase in mammalian tissues, Biochem. Biophys. Res. Commun. 88:847–853.PubMedCrossRefGoogle Scholar
  119. Gagnon, C., 1982. The protein-carboxyl methylating-demethylating system: Modulation of protein function, in Biochemistry of S-Adenosylmethionine and Related Compounds (E. Usdin, R. T. Borchardt, and C. R. Creveling, eds.), MacMillan Press, London, pp. 55–64.Google Scholar
  120. Gagnon, C., 1983. Enzymatic carboxyl methylation of calcium-binding proteins, Can. J. Biochem. Cell Biol. 61:921–926.PubMedCrossRefGoogle Scholar
  121. Gagnon, C., Viveros, O. H., Diliberto, E. J., Jr., and Axelrod, J., 1978. Enzymatic methylation of carboxyl groups of chromaffin granule membrane proteins, J. Biol. Chem. 253:3778–3781.PubMedGoogle Scholar
  122. Garbers, D. L., 1978. Demonstration of 5′-methylthioadenosine phosphorylase activity in various rat tissues. Some properties of the enzyme from rat lung, Biochim. Biophys. Acta 523:82–93.PubMedCrossRefGoogle Scholar
  123. Gaugas, J. M., 1980. Biogenic diamines and polyamines in support and in inhibition of lymphocyte proliferation, in Polyamines in Biomedical Research (J. M. Gaugas, ed.), Wiley, New York, pp. 343–362.Google Scholar
  124. Gaull, G. E., Sturman, J. A., and Raiha, N. C. R., 1972. Development of mammalian sulfur metabolism: Absence of cystathionase in human fetal tissues, Pediat. Res. 6:538–547.PubMedCrossRefGoogle Scholar
  125. Gawthorne, J. M., and Smith, R. M., 1974. Folic acid metabolism in vitamin B12-deficient sheep. Effects of injected methionine on methotrexate transport and the activity of enzymes associated with folate metabolism in liver, Biochem. J. 142:119.PubMedGoogle Scholar
  126. Gefter, M., Hausmann, R. L., Gold, M., and Hurwitz, J., 1966. Enzymatic methylation of ribonucleic acid and deoxyribonucleic acid. X. Bacteriophage T3-induced S-adenosylmethionine cleavage, J. Biol. Chem. 241:1995–2006.PubMedGoogle Scholar
  127. Giovanelli, J., Mudd, S. H., and Datko, A. H., 1980. Homocysteine biosynthesis in plants, in Natural Sulfur Compounds (D. Cavallini, G. Gaull, and V. Zappia, eds.), Plenum Press, New York, pp. 81–92.CrossRefGoogle Scholar
  128. Giovanelli, J., Mudd, S. H., and Datko, A. H., 1981. Recycling of methionine sulfur in a higher plant by two pathways characterized by either loss or retention of the 4-carbon moiety, Biochem. Biophys. Res. Commun. 100:831–839.PubMedCrossRefGoogle Scholar
  129. Goldemberg, S. H., and Algranati, I. D., 1981. Polyamines and antibiotic effect on translation, Med. Biol. 59:360–367.PubMedGoogle Scholar
  130. Goldstein, D. A., Heby, O., and Marton, L. J., 1976. Biphasic stimulation of polyamine biosynthesis in primary mouse kidney cells by infection with polyoma virus: Uncoupling from DNA and rRNA synthesis, Proc. Natl. Acad. Sci. USA 73:4022–4026.PubMedCrossRefGoogle Scholar
  131. Greenberg, D. M., 1975a. Biosynthesis of cysteine and cystine, in Metabolic Pathways, Third Ed., Vol. VII, Metabolism of Sulfur Compunds (D. M. Greenberg, ed.), Academic Press, New York, pp. 505–528.Google Scholar
  132. Greenberg, D. M., 1975b. Utilization and dissimilation of methionine, in Metabolic Pathways, Third Ed., Vol. VII, Metabolism of Sulfur Compounds (D. M. Greenberg, ed.), Academic Press, New York, pp. 529–534.Google Scholar
  133. Greene, R. C., and Davis, N. B., 1960. Biosynthesis of S-methylmethionine in the jack bean, Biochim. Biophys. Acta 43:360–362.PubMedCrossRefGoogle Scholar
  134. Groudine, M., Eisenman, R., and Weintraub, H., 1981. Chromatin structure of endogenous retroviral genes and activation by an inhibitor of DNA methylation, Nature 292:311–317.PubMedCrossRefGoogle Scholar
  135. Guranowski, A. B., Chiang, P. K., and Cantoni, G. L., 1981. 5′-Methylthioadenosine nucleosidase. Purification and characterization of the enzyme from Lupinus luteus seeds, Eur. J. Biochem. 114:293–299.PubMedCrossRefGoogle Scholar
  136. Hafner, E. W., Tabor, H., and Tabor, C. W., 1978. Mutants of Escherichia coli defective in the biosynthesis of polyamines from SAM, in Transmethylation (E. Usdin, R. T. Borchardt, and C. R. Creveling, eds.), North-Holland, Amsterdam, pp. 85–90.Google Scholar
  137. Handler, P., and Bernheim, M. L. C., 1943. The specificity of L(—)-methionine in creatine synthesis, J. Biol. Chem. 150:335–338.Google Scholar
  138. Hannonen, P., 1975. Enzymic decarboxylation of S-adenosyl-L-methionine in rat-liver—possible interaction of putrescine with prosthetic group, Acta Chem. Scand. B29:295–299.CrossRefGoogle Scholar
  139. Harper, A. E., Benevenga, N. J., and Wohlhueter, R. M., 1970. Effects of ingestion of disproportionate amounts of amino-acids, Physiol. Rev. 50:428–458.PubMedGoogle Scholar
  140. Hatch, F. T., Larrabee, A. R., Cathou, R. E., and Buchanan, J. M., 1961. Enzymatic synthesis of the methyl group of methionine. I. Identification of the enzymes and cofactors involved in the system isolated from Escherichia coli, J. Biol. Chem. 236:1095–1101.PubMedGoogle Scholar
  141. Hausmann, R., 1967. Synthesis of an S-adenosylmethionine-cleaving enzyme in T3-infected Escherichia coli and its disturbance by co-infection with enzymatically incompetent bacteriophage, J.Virol. 1:57–63.PubMedCrossRefGoogle Scholar
  142. Herbert, V., and Das, K. C., 1976. The role of vitamin B12 and folic acid in hemato-and other cell-poiesis, Vitam. Horm. 34:1–30.PubMedCrossRefGoogle Scholar
  143. Herbert, V., and Zalusky, R., 1962. Interrelations of vitamin B12 and folic acid metabolism: Folic acid clearance studies, J. Clin. Invest. 41:1263–1276.PubMedCrossRefGoogle Scholar
  144. Herbert, V., Larrabee, A. B., and Buchanan, J. M., 1962. Studies on the identification of a folate compound of human serum, J. Clin. Invest. 41:1134–1138.PubMedCrossRefGoogle Scholar
  145. Hibasami, H., Hoffman, J. L., and Pegg, A. E., 1980. Decarboxylated S-adenosylmethionine in mammalian cells, J. Biol. Chem. 255:6675–6678.PubMedGoogle Scholar
  146. Hirata, F., 1982. Overviews on phospholipid methylation, in Biochemistry of S-Adenosyl-methionine and Related Compounds (E. Usdin, R. T. Borchardt, and C. R. Creveling, eds.), MacMillan Press, London, pp. 109–118.Google Scholar
  147. Hirata, F., and Axelrod, J., 1980. Phospholipid methylation and biological signal transmission, Science 209:1082–1090.PubMedCrossRefGoogle Scholar
  148. Hoffman, D. R., Cornatzer, W. E., and Duerre, J. A., 1979. Relationship between tissue levels of S-adenosylmethionine, S-adenosylhomocysteine, and transmethylation reactions, Can. J. Biochem. 57:56–65.PubMedCrossRefGoogle Scholar
  149. Hoffman, J., 1975. A rapid liquid chromatographic determination of S-adenosylmethionine and S-adenosylhomocysteine in subgram amounts of tissue, Anal. Biochem. 68:522–530.PubMedCrossRefGoogle Scholar
  150. Hoffman, R. M., 1984. Altered methionine metabolism, DNA methylation and oncogene expression in carcinogenesis. A review and synthesis, Biochim. Biophys. Acta 738:49–87.PubMedGoogle Scholar
  151. Hogan, B. L. M., Mcllhinney, A., and Murden, S., 1974. Effect of growth conditions on the activity of ornithine decarboxylase in cultured hepatoma cells. II. Effect of serum and insulin, J. Cell Physiol. 83:353–358.PubMedCrossRefGoogle Scholar
  152. Holliday, R., and Pugh, J. E., 1975. DNA modification mechanisms and gene activity during development, Science 187:226–232.PubMedCrossRefGoogle Scholar
  153. Horne, D. W., and Briggs, W. T., 1980. Effect of dietary and nitrous oxide induced vitamin B12 deficiency on uptake of 5-methyltetrahydrofolate by isolated hepatocytes, J. Nutr. 110:223–230.PubMedGoogle Scholar
  154. Home, D. W., Briggs, W. T., and Wagner, C., 1978. Ethanol stimulates 5-methyltetrahydrofolate accumulation is isolated rat liver cells, Biochem. Pharmacol. 27:2069–2074.CrossRefGoogle Scholar
  155. Horowitz, J. H., Rypins, E. B., Henderson, J. M., Heymsfield, S. B., Moffit, S. D., Bain, R. P., Chawla, R. C., Bleier, J. C., and Rudman, D., 1981. Evidence for impairment of transsulfuration pathway in cirrhosis, Gastroenterology 81:668–675.PubMedGoogle Scholar
  156. Hosaka, K., and Yamashita, S., 1981. Induction of choline transport and its role in the stimulation of the incorporation of choline into phosphatidylcholine by polyamines in a polyamine auxotroph of Saccharomyces cerevisiae, Eur. J. Biochem. 116:1–6.PubMedCrossRefGoogle Scholar
  157. Hoshika, Y., 1982. Gas chromatographic determination of trace amounts of ß-methylmercaptopropionaldehyde (methional) in the free form using flame photometric detection, J. Chromatogr. 237:439–445.CrossRefGoogle Scholar
  158. Houlihan, C. M., and Scott, J. M., 1972. The identification of pteroylpentaglutamate as the major folate derivative in rat liver and the demonstration of its biosynthesis from exogenous [3H]pteroylglutamate. Biochem. Biophys. Res. Commun. 48:1675–1681.PubMedCrossRefGoogle Scholar
  159. Igarashi, K., Kakegawa, T., and Hirose, S., 1982. Stabilization of 30 S ribosomal subunits of Bacillus subtilis W168 by spermidine and magnesium ions, Biochim. Biohys. Acta 697:185–192.CrossRefGoogle Scholar
  160. Ikeda, T., Konishi, Y., and Ichihara, A., 1976. Transaminase of branched chain amino acids. XI. Leucine (methionine) transaminase of rat liver mitochondria, Biochim. Biophys. Acta 445:622–631.PubMedCrossRefGoogle Scholar
  161. Im, Y. S., Chiang, P. K., and Cantoni, G. L., 1979. Guanidoacetate methyltransferase, J. Biol. Chem. 254:11047–11050.PubMedGoogle Scholar
  162. Ito, S., and Nicol, J. A. C., 1975. Identification of decarboxylated S-adenosylmethionine in tapetum lucidum of catfish, Proc. R. Soc. London, Ser. B 190:33–43.Google Scholar
  163. Ito, S., Thurston, E. L., and Nicol., J. A. C., 1975. Melanoid tapeta lucida in teleost fishes, Proc. R. Soc. London, Ser. B 191:369–385.Google Scholar
  164. Izumi, Y., Sato, K., Tani, Y., and Ogata, K., 1973. Purification of 7,8-diaminopelargonic acid aminotransferase, an enzyme involved in biotin biosynthesis, from Brevibacterium divaricatum, Agric. Biol. Chem. 37:2683–2684.CrossRefGoogle Scholar
  165. Jänne, J., and Williams-Ashman, H. G., 1971. On the purification of L-ornithine decarboxylase from rat prostate and effects of thiol compounds on the enzyme, J. Biol. Chem. 246:1725–1732.PubMedGoogle Scholar
  166. Jänne, J., Pösö, H., and Raina, A., 1978. Polyamines in rapid growth and cancer, Biochim. Biophys. Acta 473:241–293.PubMedGoogle Scholar
  167. Johnston, M., Raines, R., Chang, M., Esaki, N., Soda, K., and Walsh, C., 1981. Mechanistic studies on reactions of bacterial methionine γ-lyase with olefinic amino acids, Biochemistry 20:4325–4333.PubMedCrossRefGoogle Scholar
  168. Kajander, O., Eloranta, T., and Raina, A., 1976. A sensitive isotopic assay method for S-adenosylhomocysteine hydrolase. Some properties of the enzyme from rat liver, Biochim. Biohys.Acta 438:522–531.CrossRefGoogle Scholar
  169. Kaji, H., Hisamura, M., Saito, N., and Murao, M., 1978. Evaluation of volatile sulfur compounds in expired alveolar gas in patients with liver-cirrhosis, Clin. Chim. Acta 85:279–284.PubMedCrossRefGoogle Scholar
  170. Kaji, H., Saito, N., Murao, M., Ishimoto, M., Kondo, H., Gasa, S., and Saito, K., 1980. Gas chromatographic and gas chromatographic-mass spectrometric studies on α-keto-γ-methylthiobutyric acid in urine following ingestion of optical isomers of methionine, J. Chromatogr. 221:145–148.PubMedGoogle Scholar
  171. Kamatani, N., and Carson, D. A., 1981. Abnormal regulation of methylthioadenosine and polyamine metabolism in methylthioadenosine phosphorylase-deficient human leukemic cell, Cancer Res. 40:4178–4182.Google Scholar
  172. Kamatani, N., Nelson-Rees, W. A., and Carson, D. A., 1981. Selective killing of human malignant cell lines deficient in methylthioadenosine phosphorylase, a purine metabolic enzyme, Proc. Natl. Acad. Sci. USA 78:1219–1223.PubMedCrossRefGoogle Scholar
  173. Kashiwamata, S., and Greenberg, D. M., 1970. Studies on cystathionine synthase of rat liver—properties of the highly purified enzyme, Biochim. Biophys. Acta 212:488–500.PubMedCrossRefGoogle Scholar
  174. Kato, A., Ogura, M., and Suda, M., 1966. Control mechanism in rat liver enzyme system converting L-methionine to L-cystine, J. Biochem. (Tokyo) 59:40–48.Google Scholar
  175. Kelly, K. L., Kiechle, F. L., and Jarett, L., 1984. Insulin stimulation of phospholipid methylation in isolated rat adipocyte plasma membranes, Proc. Natl. Acad. Sci. USA 81:1089–1092.PubMedCrossRefGoogle Scholar
  176. Kim, S., and Paik, W. K., 1970. Purification and properties of protein methylase II, J. Biol. Chem. 245:1806–1813.PubMedGoogle Scholar
  177. Kim, S., and Paik, W. K., 1971. Studies on the structural requirements of substrate protein for protein methylase II, Biochemistry 10:3141–3145.PubMedCrossRefGoogle Scholar
  178. Kim, S., and Paik, W. K., 1976. Labile protein methyl esters: comparison between chemically and enzymatically synthesized, Experientia 32:982–984.PubMedCrossRefGoogle Scholar
  179. Kisliuk, R. L., 1981. Pteroylpolyglutamates, Mol. Cell. Biochem. 39:331–345.PubMedCrossRefGoogle Scholar
  180. Kisliuk, R. L., Gaumont, Y., and Baugh, C. M., 1974. Polyglutamyl derivatives of folate as substrates and inhibitors of thymidylate synthetase, J. Biol. Chem. 249:4100–4103.PubMedGoogle Scholar
  181. Kjaer, A., Grue-Sorensen, G., Kelstrup, E., and Ogaard Madsen, J., 1980. Stereochemical aspects of transmethylations of potential biological interest, in Natural Sulfur Compounds (D. Cavallini, G. E. Gaull, and V. Zappia, eds.), Plenum Press, New York, pp. 1–14.CrossRefGoogle Scholar
  182. Knappe, J., and Schmitt, T., 1976. A novel reaction of S-adenosyl-L-methionine correlated with the activation of pyruvate formate-lyase, Biochem. Biophys. Res. Commun. 71:1110–1117.PubMedCrossRefGoogle Scholar
  183. Koblin, D. D., Watson, J. E., Deady, J. E., Stockstad, E. L. R., and Eger, E. I., 1981. Inactivation of methionine synthetase by nitrous oxide in mice, Anesthesiology 54:318–324.PubMedCrossRefGoogle Scholar
  184. Kraus, J., Packman, S., Fowler, B., and Rosenberg, L. E., 1978. Purification and properties of cystathionine γ-synthase from human liver, J. Biol. Chem. 253:6523–6528.PubMedGoogle Scholar
  185. Krebs, H. A., Hems, R. and Tyler, B., 1976. The regulation of folate and methionine metabolism, Biohem. J. 158:341–353.Google Scholar
  186. Kutzbach, C., and Stokstad, E. L. R., 1968. Partial purification of a 10-formyltetrahydrofolate: NADP oxidoreductase from mammalian liver, Biochem. Biophys. Res. Commun. 30:111–117.PubMedCrossRefGoogle Scholar
  187. Kutzbach, C., and Stokstad, E. L. R., 1971. Mammalian methylenetetrahydrofolate reductase. Partial purification, properties, and inhibition of S-adenosylmethionine, Biochim. Biophys. Acta 250:459–477.PubMedCrossRefGoogle Scholar
  188. Lassen, H. C. A., Henrickson, E., Neukirch, F., and Kristensen, H. S., 1956. Treatment of tetanus. Severe bone-marrow depression after prolonged nitrous oxide anaesthesia, Lancet 1:527–530.CrossRefGoogle Scholar
  189. Laster, L., Mudd, S. H., Finkelstein, J. D., and Irreverre F., 1965. Homocystinuria due to cystathionine synthase deficiency: The metabolism of L-methionine, J. Clin. Invest. 44:1708–1719.PubMedCrossRefGoogle Scholar
  190. Lawrence, F., Richou, M., Vedel, M., Farrugia, G., Blanchard, P., and Robert-Gero, M., 1978. Identification of some metabolic products of 5′-deoxy-5′-S-isobutylthioadenosine, an inhibitor of virus induced cell transformation, Eur. J. Biochem. 87:257–263.PubMedCrossRefGoogle Scholar
  191. Leete, E., Davis, G. E., Hutchinson, C. R., Woo, K. W., and Chedekel, M. R., 1974. Biosynthesis of azetidine-2-carboxylic acid in Convallaria majalis, Phytochemistry 13:427–433.CrossRefGoogle Scholar
  192. Leslie, G. I., and Baugh, C. M., 1974. The uptake of pteroyl[14C]glutamate into rat liver and its incorporation into the natural pteroyl poly-γ-glutamates of that organ, Biochemistry 13:4957–4961.PubMedCrossRefGoogle Scholar
  193. Liau, M. C., Linn, G. W., and Hurlbert, R. B., 1977. Partial purification and characterization of tumor and liver S-adenosylmethionine synthetases, Cancer Res. 37:427–435.PubMedGoogle Scholar
  194. Liss, M., Maxam, A. M., and Cuprak, L. J., 1969. Methylation of protein by calf spleen methylase. A new protein methylation reaction, J. Biol. Chem. 244:1617–1622.PubMedGoogle Scholar
  195. Livesey, G., 1981. Metabolism of ‘essential’ 2-oxo acids by liver and a role for branched-chain oxo acid dehydrogenase in the catabolism of methionine, in Metabolism and Clinical Implications of Branched Chain Amino and Ketoacids (M. Walser and J. R. Williamson, eds.), Elsevier/North Holland, New York, pp. 143–148.Google Scholar
  196. Lombardini, J. B., and Talalay, P., 1971. Formation, functions and regulatory importance of S-adenosyl-L-methionine, Adv. Enzyme Regul. 9:349–384.CrossRefGoogle Scholar
  197. Lombardini, J. B., and Talalay, P., 1973. Effects of inhibitors of adenosine-triphosphate-L-methionine S-adenosyltransferase on levels of S-adenosyl-L-methionine in normal and malignant mammalian tissues, Mol. Pharmacol. 9:542–560.PubMedGoogle Scholar
  198. Lombardini, J. B., Chou, T.-C., and Talalay, P., 1973. Regulatory properties of adenosine triphosphate-L-methionine S-adenosyltransferase of rat-liver, Biochem. J. 135:43–57.PubMedGoogle Scholar
  199. Lovenberg, W., 1982. Methylation of small molecules: An overview, in Biochemistry of S-Adenosylmethionine and Related Compounds (E. Usdin, R. T. Borchardt, and C. R. Creveling, eds.), MacMillan Press, London, pp. 427–436.Google Scholar
  200. Lumb, M., Deacon, R., Perry, J., Chanarin, E., Minty, B., Halsey, M. J., and Nunn, J. F., 1980. The effect of nitrous oxide inactivation of vitamin B12 on rat hepatic folate, Biochem. J. 186:933–936.PubMedGoogle Scholar
  201. Lund, P., 1980. Glutamine-metabolism in the rat, FEBS Lett. 117:K86–92.CrossRefPubMedGoogle Scholar
  202. Mackenzie, R. B., and Baugh, C. M., 1980. Tetrahydropteroyl polyglutamate derivatives as substrates of two multifunctional proteins with folate-dependent enzyme activities, Biochim. Biophys. Acta 611:187–195.PubMedCrossRefGoogle Scholar
  203. Makar, A. B., and Tephly, T. R., 1983. Effect of nitrous oxide and methionine treatments on hepatic S-adenosylmethionine and methylation reactions in the rat, Mol. Pharmacol. 24:124–128.PubMedGoogle Scholar
  204. Mamont, P. S., and Danzin, C., 1981. In vitro and in vivo regulation of S-adenosyl-L-methionine decarboxylase by polyamines, in Advances in Polyamine Research, Vol. 3 (C. M. Caldara, V. Zappia, and U. Bachrach, eds.), Raven, New York, pp. 123–135.Google Scholar
  205. Mamont, P. S., Joder-Ohlenbusch, A. M., Nussli, M., and Grove, J., 1981. Indirect evidence for a strict negative control of S-adenosyl-L-methionine decarboxylase by spermidine in rat hepatoma cells, Biochem. J. 196:411–422.PubMedGoogle Scholar
  206. Mamont, P. S., Danzin, C., Wagner, J., Siat, M., Joder-Ohlenbusch, A. M., and Claverie, N., 1982. Accumulation of decarboxylated S-adenosyl-L-methionine in mammalian cells as a consequence of the inhibition of putrescine biosynthesis, Eur. J. Biochem. 123:499–504.PubMedCrossRefGoogle Scholar
  207. Manen, C. A., and Russell, D. H., 1973. Early cyclical changes in polyamine synthesis during sea urchin development, J. Embryol. Exp. Morph. 30:243–256.PubMedGoogle Scholar
  208. Marcker, K., and Sanger, F., 1964. N-Formyl methionyl-s-RNA, J. Mol. Biol. 8:835–840.PubMedCrossRefGoogle Scholar
  209. Marcker, K., and Sanger, F., 1965. The formation of N-formyl-methionyl-sRNA, J. Mol. Biol. 14:63–70.CrossRefPubMedGoogle Scholar
  210. Marcker, K., Clark, B. F. C., and Anderson, J. D., 1966. N-Formylmethionyl-sRNA and its relation to protein biosynthesis, Cold Spring Harbor Symp. Quant. Biol. 31:279–285.PubMedCrossRefGoogle Scholar
  211. Mato, J. M., and Alemany S., 1983. What is the function of phospholipid N-methylation? Biochem. J. 213:1–10.PubMedGoogle Scholar
  212. Matsui, S. I., and Amaha, M., 1981. Studies on volatile sulfur-compounds in beer. 5. Production of S-methyl thioacetate from methyl mercaptan by brewers yeast, Agric. Biol. Chem. 45:1341–1349.CrossRefGoogle Scholar
  213. Matsui, S., Yabuuchi, S., and Amaha, M., 1981. Studies on volatile sulfur-compounds in beer. 4. Production of S-methyl thioacetate from methyl mercaptan by Saccaromyces cerevisiae, Agric. Biol. Chem. 45:771–772.CrossRefGoogle Scholar
  214. Matsuo, Y., and Greenberg, D. M., 1958. A crystalline enzyme that cleaves homoserine and cystathionine. I. Isolation procedure and some physicochemical properties, J. Biol. Chem. 230:545–560.PubMedGoogle Scholar
  215. Matthews, R. G., and Baugh, C. M., 1980. Interactions of pig liver methylenetetrahydrofolate reductase with methylenetetrahydropteroylpolyglutamate substrates and with dihydropteroylpolyglutamate inhibitors, Biochemistry 19:2040–2045.PubMedCrossRefGoogle Scholar
  216. Matthews, R. G., and Kaufman, S., 1980. Characterization of the dihydropterin reductase activity of pig liver methylenetetrahydrofolate reductase, J. Biol. Chem. 255:6014–6017.PubMedGoogle Scholar
  217. Maw, G. A., 1956. Thetin-homocysteine transmethylase. A preliminary manometric study of the enzyme from rat liver, Biochem. J. 63:116–123.PubMedGoogle Scholar
  218. Maw, G. A., 1958. Thetin-homocysteine transmethylase. Some further characteristics of the enzyme from rat liver, Biochem. J. 70:168–173.PubMedGoogle Scholar
  219. McBurney, M. W., and Whitmore, G. F., 1974. Isolation and biochemical characterization of folate deficient mutants of Chinese hamster cells, Cell 2:173–182.PubMedCrossRefGoogle Scholar
  220. McGing, P., Reed, B., Weir, D. G., and Scott, J. M., 1978. The effect of vitamin B12 inhibition in vivo: Impaired folate polyglutamate biosynthesis indicating that 5-methyltetrahydropteroylglutamate is not its usual substrate, Biochem. Biophys. Res. Commun. 82:540–546.PubMedCrossRefGoogle Scholar
  221. McGivney, A., Crews, F. T., Hirata, F., Axelrod, J., and Siraganian, R. R., 1981. Rat basophilic leukemia cell lines defective in phospholipid methyltransferase enzyme, Ca2+ influx and histamine release: Reconstruction by hybridization, Proc. Natl. Acad. Sci. USA 78:6176–6180.PubMedCrossRefGoogle Scholar
  222. McGuire, J. J., and Bertino, J. R., 1981. Enzymatic synthesis and function of folylpolyglutamates, Mol. Cell. Biochem. 38:19–48.PubMedCrossRefGoogle Scholar
  223. McGuire, J. J., Hsieh, H., Coward, J. K., and Bertino, J. R., 1980. Enzymatic synthesis of folylpolyglutamates. Characterization of the reaction and its products, J. Biol. Chem. 255:5776–5788.PubMedGoogle Scholar
  224. McRorie, R. A., Sutherland, G. L., Lewis, M. S., Barton, A. D., Glazener, M. G., and Shive, A., 1954. Isolation and identification of a naturally occurring analog of methionine, J. Am. Chem. Soc. 76:115–118.CrossRefGoogle Scholar
  225. Meister, A., and Wellner, D., 1963. Flavoprotein amino acid oxidases, Enzymes 7:609–648.Google Scholar
  226. Meller, E., Rosengarten, H., Friedhoff, A. J., Stebbins, R. D., and Silver, R., 1975. 5-Methyltetrahydrofolic acid is not a methyl donor for biogenic amines: Enzymatic formation of formaldehyde, Science 187:171–173.PubMedCrossRefGoogle Scholar
  227. Millonig, G., De Rosa, M., Gambacorta, A., and Bu’lock, J. D., 1975. Ultrastructure of an extremely thermophilic acidophilic microorganism, Gen. Microbiol. 86:165–173.CrossRefGoogle Scholar
  228. Mitchell, A. D., and Benevenga, N. J., 1976. Importance of sarcosine formation in methionine methyl carbon oxidation in the rat, J. Nutr. 106:1702–1713.PubMedGoogle Scholar
  229. Mitchell, A. D., and Benevenga, N. J., 1978. Role of transamination in methionine oxidation in rat, J. Nutr. 108:67–78.PubMedGoogle Scholar
  230. Morin, A. M., and Liss, M., 1973. Evidence for a methylated protein intermediate in pituitary methanol formation, Biochem. Biophys. Res. Commun. 52:373–378.PubMedCrossRefGoogle Scholar
  231. Morris, D. R., and Marton, L. J. (eds.), 1981. Polyamines in Biology and Medicine, Dekker, New York, 459 pp.Google Scholar
  232. Mudd, S. H., 1959a. Enzymatic cleavage of S-adenosylmethionine, J. Biol. Chem. 234:87–92.PubMedGoogle Scholar
  233. Mudd, S. H., 1959b. The mechanism of the enzymatic cleavage of S-adenosylmethionine to α-amino-γ-butyrolactone, J. Biol. Chem. 234:1784–1786.Google Scholar
  234. Mudd, S. H., 1980. Diseases of sulphur metabolism: Implications for the methionine-homocysteine cycle, and vitamin responsiveness, Ciba Found. Symp. 72:239–258.Google Scholar
  235. Mudd, S. H., and Levy, H. L., 1978. Disorders of transsulfuration, in The Metabolic Basis of Inherited Disease (J. B. Stanbury, J. B. Wyngaarden, and D. S. Fredrickson, eds.), McGraw-Hill, New York, pp. 458–503.Google Scholar
  236. Mudd, S. H., and Poole, J. R., 1975. Labile methyl balances for normal humans on various dietary regimens, Metab. Clin. Exp. 24:721–735.PubMedCrossRefGoogle Scholar
  237. Murr, D. P., and Yang, S. F., 1975. Conversion of 5′-methylthioadenosine to methionine by apple tissue, Phytochemistry 14:1291–1292.CrossRefGoogle Scholar
  238. Nakagawa, H., and Kimura, H., 1968. Purification and properties of cystathionine synthetase from rat liver: Separation of cystathionine synthetase from serine dehydratase, Biochem. Biophys. Res. Commun. 32:208–214.CrossRefGoogle Scholar
  239. Naveh-Mary, T., and Cedar, H., 1981. Active gene sequences are undermethylated, Proc. Natl. Acad. Sci. USA 78:4246–4250.CrossRefGoogle Scholar
  240. Nishimura, S., 1977. Characterization and enzymatic synthesis of 3-(3-amino-3-carboxypropyl)-uridine in transfer RNA: transfer of the 3-amino-3-carboxypropyl group from adenosylmethionine, in The Biochemistry of Adenosylmethionine (F. Salvatore, E. Borek, V. Zappia, H. G. Williams-Ashman, and F. Schlenk, eds.), Columbia University Press, New York, pp. 510–520.Google Scholar
  241. Nishimura, S., Taya, Y., Kuchino, Y., and Ohashi, Z., 1974. Enzymatic synthesis of 3-(3-amino-3-carboxypropyl)uridine in Escherichia coli phenylalanine transfer RNA: Transfer of the 3-amino-3-carboxypropyl group from S-adenosylmethionine, Biochem. Biophys. Res. Commun. 57:702–708.PubMedCrossRefGoogle Scholar
  242. Nixon, P. F., and Bertino, J. R., 1970. Interrelationships of vitamin B12 and folate in man, Am. J. Med. 48:555–561.PubMedCrossRefGoogle Scholar
  243. Nixon, P. F., Slutsky, G., Nahas, A., and Bertino, J. R., 1973. The turnover of folate coenzymes in murine lymphoma cells, J. Biol. Chem. 248:5932–5936.PubMedGoogle Scholar
  244. Noguchi, T., Okuno, E., and Kido, R., 1976. Identity of isoenzyme of histidine-pyruvate aminotransferase with serine-pyruvate aminotransferase, Biochem. J. 159:607–613.PubMedGoogle Scholar
  245. Noronha, J. M., and Silverman, M., 1962. On folic acid, vitamin B12, methionine, and formiminoglutamate metabolism, in Vitamin B 12 and Intrinsic Factor, 2nd European Symposium (H. C. Heinrich, ed.), Verlag, Stuttgart, pp. 728–736.Google Scholar
  246. Ohashi, Z., Maeda, M., McCloskey, J. A., and Nishimura, S., 1974. 3-(3-Amino-3-carboxypropyl)uridine: A novel modified nucleoside isolated from Escherichia coli phenylalanine transfer ribonucleic acid, Biochemistry 13:2620–2625.CrossRefGoogle Scholar
  247. Oliva, A., Galletti, P., Zappia, V., Paik, W. K., and Kim, S., 1980. Effect of S-adenosyl-L-methionine and S-adenosyl-L-homocysteine derivatives on protein methylation, in Natural Sulfur Compounds: Novel Biochemical and Structural Aspects (D. Cavallini, G. E. Gaull, and V. Zappia, eds.), Plenum Press, New York, pp. 55–66.CrossRefGoogle Scholar
  248. Olson, J. W., and Russell, D. H., 1980. Prolonged ornithine decarboxylase induction in regenerating carcinogen-treated liver, Cancer Res. 40:4373–4380.PubMedGoogle Scholar
  249. Oshima, T., 1975. Thermine—new polyamine from an extreme thermophile, Biochem. Biophys. Res. Commun. 63:1093–1098.PubMedCrossRefGoogle Scholar
  250. Oshima, T., and Baba, M., 1981. Occurrence of sym-homospermidine in extremely thermophilic bacteria. Biochem. Biophys. Res. Commun. 103:156–160.PubMedCrossRefGoogle Scholar
  251. Paik, W. K., and Kim, S. K., 1980. Protein Methylation, John Wiley and Sons, New York.Google Scholar
  252. Pajula, R. L., and Raina, A., 1979. Methylthioadenosine, a potent inhibitor of spermine synthase from bovine brain, FEBS Lett. 99:343–345.PubMedCrossRefGoogle Scholar
  253. Palmer, J. L., and Abeles, R. H., 1979. The mechanism of action of S-adenosylhomocysteinase, J. Biol. Chem. 254:1217–1226.PubMedGoogle Scholar
  254. Pariza, M. W., Becker, J. E., Yager, J. D., Bonney, R. J., and Potter, V. R., 1973. Enzyme induction in primary cultures of rat liver parenchymal cells, in Differentiation and Control of Malignancy of Tumor Cells (W. Nakahara, T. Ono, T. Sugimura, and H. Sugano, eds.), University of Tokyo Press, Tokyo, pp. 267–285.Google Scholar
  255. Pascal, T. A., Gillam, B. M., and Gaull, G. E., 1972. Cystathionase: Immunochemical evidence for absence from human fetal liver, Pediat. Res. 6:773–778.PubMedCrossRefGoogle Scholar
  256. Pegg, A. E., 1977. Evidence for presence of pyruvate in rat-liver S-adenosylmethionine decarboxylase, FEBS Lett. 84:33–36.PubMedCrossRefGoogle Scholar
  257. Pegg, A. E., 1983. Inhibitors of S-adenosylmethionine decarboxylase, in Methods in Enzymology—Polyamines, Vol. 94 (H. Tabor and C. W. Tabor, eds.), Academic Press, New York, pp. 239–247.Google Scholar
  258. Pegg, A. E., 1984. S-Adenosylmethionine decarboxylase—a brief review, in Cell Biochemistry and Function 2:11–15.PubMedCrossRefGoogle Scholar
  259. Pegg, A. E., and Hibasami, H., 1979. The role of S-adenosylmethionine in mammalian polyamine synthesis, in Transmethylation (E. Usdin, R. T. Borchardt, and C. R. Creveling, eds.), Elsevier/North-Holland, New York, pp. 105–116.Google Scholar
  260. Pegg, A. E., and Williams-Ashman, H. G., 1969a. On the role of S-adenosyl-L-methionine in the biosynthesis of spermidine by rat prostate, J. Biol. Chem. 244:682–693.PubMedGoogle Scholar
  261. Pegg, A. E., and Williams-Ashman, H. G., 1969b. Phosphate-stimulated breakdown of 5′-methylthioadenosine by rat ventral prostate, Biochem. J. 115:241–247.PubMedGoogle Scholar
  262. Pegg, A. E., and Williams-Ashman, H. G., 1981. Biosynthesis of putrescine, in Polyamines in Biology and Medicine (D. R. Morris and L. J. Marton, eds.), Dekker, New York, pp. 3–42.Google Scholar
  263. Pegg, A. E., Hibasami, H., Matsui, I., and Bethell, D. R., 1981. Formation and interconversion of putrescine and spermidine in mammalian cells, Adv. Enzyme Regul. 19:427–451.CrossRefGoogle Scholar
  264. Pegg, A. E., Pösö, H. and Bennett, R. A. 1982. Biosynthesis and accumulation of decar-boxylated S-adenosylmethionine, in Biochemistry of S-Adenosylmethionine and Related Compounds (E. Usdin, R. T. Borchardt, and C. R. Creveling, eds.), MacMillan Press, London, pp. 547–556.Google Scholar
  265. Poston, J. M., 1980. Cobalamin-dependent formation of leucine and ß-leucine by rat and human tissue. Changes in pernicious anemia, J. Biol. Chem. 255:10067–10072.PubMedGoogle Scholar
  266. Prasad, C., and Edwards, R. M., 1984. Stimulation of phospholipid methylation and thyroid hormone secretion by thyrotropin, Endocrinology 114:941–945.PubMedCrossRefGoogle Scholar
  267. Rachele, J. R., Reed, L. J., Kidwai, A. R., Ferger, M. F., and du Vigneaud, V., 1950. Conversion of cystathionine labeled with 35S to cystine in vivo, J. Biol. Chem. 185:817–826.PubMedGoogle Scholar
  268. Raina, A. and Jänne, J. (eds), 1981. Polyamines as cellular regulators, Med. Biol. 59:269–461.Google Scholar
  269. Razin, A., and Cedar, H., 1984. DNA methylation in eukaryotic cells, Int. Rev. Cytol. 92:159–185.PubMedCrossRefGoogle Scholar
  270. Razin, A., and Friedman, J., 1981. DNA methylation and its possible biological roles, Prog. Nucl. Acid Res. Mol. Biol. 251:33–52.CrossRefGoogle Scholar
  271. Razin, A., and Riggs, A. D., 1980. DNA methylation and gene function, Science 210:604–610.PubMedCrossRefGoogle Scholar
  272. Razin, A., and Szyf, M., 1984. DNA methylation patterns. Formation and function, Biochim. Biophys. Acta 782:331–342.PubMedCrossRefGoogle Scholar
  273. Razin, A., Cedar, H., and Riggs, A. D. (eds.), 1984. DNA Methylation: Biochemistry and Biological Significance, Springer-Verlag, New York.Google Scholar
  274. Reed, L. J., Cavallini, D., Plum, F., Rachele, J. R., and du Vigneaud, V., 1949. Conversion of methionine to cystine in a human cystinuric, J. Biol. Chem. 180:783–790.PubMedGoogle Scholar
  275. Richards, H. H., Chiang, P. K., and Cantoni, G. L., 1978. Adenosylhomocysteine hydrolase—crystallization of purified enzyme and its properties, J. Biol. Chem. 253:4476–4480.PubMedGoogle Scholar
  276. Roisin, M.-P., and Chatagner, F., 1969. Purification and properties of homocysteine desulfhydrase from rat liver and its identification as cystathionase (French translation), Bull. Soc. Chim. Biol. 51:481–493.PubMedGoogle Scholar
  277. Rolle, I., Hobucher, H. E., Kneifel, H., Paschold, B., Riepe, W., and Soeder, C. J., 1977. Amines in unicellular green algae. 2. Amines in Scenedesmus acutus, Anal. Biochem. 77:103–109.PubMedCrossRefGoogle Scholar
  278. Rosen, H. M., Yoshimura, N., Hodgman, J. M., and Fischer, J. E., 1977. Plasma amino acid patterns in hepatic encephalopathy of differing etiology, Gastroenterology 72:483–487.PubMedGoogle Scholar
  279. Rosenblatt, D. S., Cooper, B. A., Leu-Shing, S., Wong, P. W. K., Berlow, S., Narisawa, K., and Baumgartner, R., 1979. Folate distribution in cultured human cells. Studies on 5,10-CH2-H4PteGlu reductase deficiency, J. Clin. Invest. 63:1019–1025.PubMedCrossRefGoogle Scholar
  280. Russell, D. H., 1973. Polyamines in growth—normal and neoplastic, in Polyamines in Normal and Neoplastic Growth (D. H. Russell, ed.), Raven Press, New York, pp. 1–13.Google Scholar
  281. Russell, D. H., 1981. Ornithine decarboxylase: Transcriptional induction by trophic hormones via a cAMP and cAMP-dependent protein kinase pathway, in Polyamines in Biology and Medicine (D. R. Morris and L. J. Marton, eds.), Marcel Dekker, New York, pp. 109–125.Google Scholar
  282. Russell, D. H., 1985. Ornithine decarboxylase: A key regulatory enzyme in normal and neoplastic growth, Drugs Metab. Rev. 16:1–88.CrossRefGoogle Scholar
  283. Russell, D. H., and Durie, B. G. M., 1978. Progress in Cancer Research and Therapy, Vol. 8: Polyamines as Markers of Normal and Malignant Growth, Raven Press, New York, 178 pp.Google Scholar
  284. Russell, D. H., and Levy, C. C., 1971. Polymine accumulation and biosynthesis in a mouse L1210 leukemia, Cancer Res. 31:248–251.PubMedGoogle Scholar
  285. Russell, D. H., and McVicker, T. A., 1972. Polyamines in the developing rat and in supportive tissues, Biochim. Biophys. Acta 259:247–258.Google Scholar
  286. Russell, D. H., and Snyder, S. H., 1969. Amine synthesis in regenerating rat liver: Rapid turnover of ornithine decarboxylase, Mol. Pharmacol. 5:253–262.PubMedGoogle Scholar
  287. Russell, D. H., Medina, V. J., and Snyder, S. H., 1970. The dynamics of synthesis and degradation of polyamines in normal and regenerating rat liver and brain, J. Biol. Chem. 245:6732–6738.PubMedGoogle Scholar
  288. Sahyoun, N. E., LeVine H., Davis, J., Hebdon, G. E., and Cuatrecasas, P., 1981. Molecular complexes involved in the regulation of adenylate cyclase, Proc. Natl. Acad. Sci. USA 78:6158–6162.PubMedCrossRefGoogle Scholar
  289. Salerno, D. M., and Beeler, D. A., 1973. The biosynthesis of phospholipids and their precursors in rat liver involving de novo methylation, and base-exchange pathways, in vivo, Biochim. Biophys. Acta 326:325–338.PubMedCrossRefGoogle Scholar
  290. Salvatore, F., Zappia, V., and Shapiro, S. K., 1968. Quantitative analysis of S-adenosylhomocysteine in liver, Biochim. Biophys. Acta 158:461–464.PubMedCrossRefGoogle Scholar
  291. Salvatore, F., Borek, E., Zappia, V., Williams-Ashman, H. G., and Schlenk, F. (eds.), 1977. The Biochemistry of Adenosylmethionine, Columbia University Press, New York, 588 pp.Google Scholar
  292. Saponara, A. G., Enger, M. D., and Hanners, J. L., 1974. The isolation from ribonucleic acid of substituted uridines containing α-aminobutyrate moieties derived from methionine, Biochim. Biophys. Acta 349:61–77.PubMedCrossRefGoogle Scholar
  293. Sauer, H., and Wilmanns, W., 1977. Cobalamin dependent methionine synthesis and methylfolate-trap in human vitamin B12 deficiency, Br. J. Haematol. 36:189–198.PubMedCrossRefGoogle Scholar
  294. Schatz, R. A., and Sellinger, O. Z., 1975. Effect of methionine and methionine sulphoximine on rat brain S-adenosylmethionine levels, J. Neurochem. 24:63–66.PubMedCrossRefGoogle Scholar
  295. Schlenk, F., 1978. The biosynthesis of 5-adenosylmethionine by yeast cells, in Transmethylation (E. Usdin, R. T. Borchardt, and C. R. Creveling, eds.), North-Holland, Amsterdam, pp. 3–8.Google Scholar
  296. Schlenk, F., 1983. Methylthioadenosine, Adv. Enzymol. 54:195–265.PubMedGoogle Scholar
  297. Schlenk, F., and DePalma, R. F., 1955. Note on the metabolism of the methylsulfonium salt of methionine, Arch. Biochem. Biophys. 57:266–269.PubMedCrossRefGoogle Scholar
  298. Schlenk, F., and Ehninger, D. J., 1964. Observations on the metabolism of 5′-methylthioadenosine, Arch. Biochem. Biophys. 106:95–100.PubMedCrossRefGoogle Scholar
  299. Schlenk, F., Zydek-Cwick, C. R., and Hutson, N. K., 1971. Enzymatic deamination of adenosine sulfur compounds, Arch. Biochem. Biophys. 142:144–149.PubMedCrossRefGoogle Scholar
  300. Schwartz, M., and Shapiro, S. K., 1954. The mechanism of utilization of thiomethyladenosine in the biosynthesis of methionine, J. Bacterial. 67:98–102.Google Scholar
  301. Scott, J. M., Reed, B., McKenna, B., McGing, P., McCann, S., O’Sullivan, H., Wilson, P., and Weir, D. G., 1979. A study of the multiple changes induced in vivo in experimental animals by inactivation of vitamin B12 using nitrous oxide, in Chemistry and Biology of Pteridines (R. L. Kisliuk and G. M. Brown, eds.), Elsevier, New York, pp. 335–340.Google Scholar
  302. Scrutton, M. C., and Beis, I., 1979. Inhibitory effects of histidine and their reversal. The roles of pyruvate carboxylase and N10-formyltetrahydrofolate dehydrogenase, Biochem. J. 177:833–846.PubMedGoogle Scholar
  303. Seppänen, P., Alhonen-Hongisto, L., and Jänne, J., 1981. Polyamine deprivation-induced enhanced uptake of methylglyoxal bis(guanylhydrazone) by tumor-cells, Biochim. Biophys. Acta 614:169–117.CrossRefGoogle Scholar
  304. Seyfried, C. E., and Morris, D. R., 1979. Relationships between inhibition of polyamine biosynthesis and DNA replication in activated lymphocytes, Cancer Res. 39:4861–4867.PubMedGoogle Scholar
  305. Seyfried, C. E., Oleinik, O. E., Degen, J. L., Resing, K., and Morris, D. R., 1982. Purification, properties and regulation of the level of bovine S-adenosylmethionine decarboxylase during lymphocyte mitogenesis, Biochim. Biophys. Acta 716:169–177.PubMedCrossRefGoogle Scholar
  306. Shane, B., and Stokstad, E. L. R., 1975. Transport and metabolism of folates by bacteria, J. Biol. Chem. 250:2243–2253.PubMedGoogle Scholar
  307. Shane, B., and Stokstad, E. L. R., 1976. Transport and utilization of methyltetrahydrofolates by Lactobacillus casei, J. Biol. Chem. 251:3405–3410.PubMedGoogle Scholar
  308. Shane, B., and Stokstad, E. L. R., 1977. Rate-limiting steps in folate metabolism by Lactobacillus casei, J. Gen. Microbiol. 103:261–270.PubMedCrossRefGoogle Scholar
  309. Shane, B., and Stokstad, E. L. R., 1983. The interrelationships among folate, vitamin B12, and methionine metabolism, Adv. Nutr. Res. 5:133–170.PubMedGoogle Scholar
  310. Shane, B., Watson, J. E., and Stokstad, E. L. R., 1977. Uptake and metabolism of [3H]folate by normal and by vitamin B12-and methionine-deficient rats, Biochim. Biophys. Acta 497:241–252.PubMedCrossRefGoogle Scholar
  311. Shapiro, S. K., 1953. Response of Aerobacter aerogenes methionine auxotrophs to adenine thiomethyl compounds, J. Bacteriol. 65:310–312.PubMedGoogle Scholar
  312. Shapiro, S. K., 1955. The biosynthesis of methionine from homocysteine and methylmethionine sulfonium salt, Biochim. Biophys. Acta 18:134–135.PubMedCrossRefGoogle Scholar
  313. Shapiro, S. K., 1982. Methylthioribose as a precursor of the carbon chain of methionine, in Biochemistry of S-Adenosylmethionine and Related Compounds (E. Usdin, R. T. Borchardt, and C. R. Creveling, eds.), MacMillan Press, London, pp. 719–722.Google Scholar
  314. Shapiro, S. K., and Barrett, A., 1981. 5-Methylthioribose as a precursor of the carbon chain of methionine, Biochem. Biophys. Res. Commun. 102:302–307.PubMedCrossRefGoogle Scholar
  315. Shapiro, S. K., and Mather, A. N., 1958. The enzymatic decomposition of S-adenosylmethionine, J. Biol. Chem. 233:631–633.PubMedGoogle Scholar
  316. Shapiro, S. K., and Schlenk, F., 1980. Conversion of 5′-methylthioadenosine into S-adenosylmethionine by yeast cells, Biochim. Biphys. Acta 633:176–180.CrossRefGoogle Scholar
  317. Shapiro, S. K., Lohmar, P., and Hertenstein, M., 1963. Utilization of S-adenosylmethionine for the biosynthesis of methionine, Arch. Biochem. Biophys. 100:74–76.PubMedCrossRefGoogle Scholar
  318. Shields, R. P., and Whitehair, C. K., 1973. Muscle creatine: In vivo depletion by feeding ß-guanidinopropionic acid, Can. J. Biochem. 51:1046–1049.PubMedCrossRefGoogle Scholar
  319. Shin, Y. S., Williams, M. A., and Stokstad, E. L. R., 1972. Identification of folic acid compounds in rat liver, Biochem. Biophys. Res. Commun. 47:35–43.PubMedCrossRefGoogle Scholar
  320. Shin, Y. S., Buehring, K. U., and Stokstad, E. L. R., 1975. The relationships between vitamin B12 and folic acid and the effect of methionine on folate metabolism, Mol. Cell. Biochem. 9:97–108.PubMedCrossRefGoogle Scholar
  321. Smith, H. O., 1979. Nucleotide sequence specificity of restriction endonucleases, Science 205:455–462.PubMedCrossRefGoogle Scholar
  322. Smith, H. O., 1982. Biological roles of DNA methylation. An overview, in Biochemistry of S-Adenosylmethionine and Related Compounds (E. Usdin, R. T. Borchardt, and C. R. Creveling, eds.), MacMillan Press, London, pp. 205–212.Google Scholar
  323. Smith, R. M., and Osborne-White, W. S., 1973. Folic acid metabolism in vitamin B12-deficient sheep. Depletion of liver folates, Biochem. J. 136:279–293.PubMedGoogle Scholar
  324. Smith, R. M., Osborne-White, W. S., and Gawthorne, J. M., 1974. Folic acid metabolism in vitamin B12-deficient sheep. Effects of injected methionine on liver constituents associated with folate metabolism, Biochem. J. 142:105–117.PubMedGoogle Scholar
  325. Smith, T. A., 1975. Recent advances in biochemistry of plant amines, Phytochemistry 14:865–890.CrossRefGoogle Scholar
  326. Steele, R. D., and Benevenga, N. J., 1978. Identification of 3-methylthiopropionic acid as an intermediate in the mammalian methionine metabolism in vitro, J. Biol. Chem. 253:7844–7850.PubMedGoogle Scholar
  327. Steele, R. D., and Benevenga, N.J., 1979. The metabolism of 3-methylthiopropionate in rat liver homogenates, J. Biol. Chem. 254:8885–8890.PubMedGoogle Scholar
  328. Steele, R. D., Barber, T. A., Lalich, J. J., and Benevenga, N. J., 1979. Effects of dietary 3-methylthiopropionate on metabolism, growth and hematopoiesis in the rat, J. Nutr. 109:1739–1751.Google Scholar
  329. Steglich, C., and Scheffler, I. E., 1982. An ornithine decarboxylase-deficient mutant of Chinese hamster ovary cells, J. Biol. Chem. 257:4603–4609.PubMedGoogle Scholar
  330. Stetten, D., Jr., 1942. The fate of dietary serine in the body of the rat, J. Biol. Chem. 144:501–506.Google Scholar
  331. Stillway, L. W., and Walle, T., 1977. Identification of the unusual polyamines 3,3′-diaminodipropylamine and N, N′-bis(3-aminopropyl)-l,3,-propanediamine in the white shrimp Penaeus setiferus, Biochem. Biophys. Res. Commun. 77:1103–1107.PubMedCrossRefGoogle Scholar
  332. Stock, J. B., and Koshland, D. E., 1979. Identification of a methyltransferase and a methylesterase as essential genes in bacterial chemotaxis, in Transmethylation (E. Usdin, R. T. Borchardt, and C. R. Creveling, eds.), Elsevier/North-Holland, New York, pp. 511–520.Google Scholar
  333. Stokstad, E. L. R., 1976. Vitamin B12 and folic acid, in Present Knowledge in Nutrition, 4th Ed., Nutrition Foundation, New York, pp. 204–216.Google Scholar
  334. Stokstad, E. L. R., 1977. Regulation of folate metabolism by vitamin B12, in Folic Acid: Biochemistry and Physiology in Relation to the Human Nutrition Requirement, National Research Council, National Academy of Sciences, Washington, D.C., pp. 122-135.Google Scholar
  335. Stoner, G. L., and Eisenberg, M. A., 1975a. Purification and properties of 7,8-diaminopelargonic acid aminotransferase—an enzyme in the biotin biosynthetic pathway, J. Biol. Chem. 250:4029–4036.PubMedGoogle Scholar
  336. Stoner, G. L., and Eisenberg, M. A., 1975b. Biosynthesis of 7,8-diaminopelargonic acid from 7-keto-8-aminopelargonic acid and S-adenosyl-L-methionine—kinetics of reaction. J. Biol. Chem. 250:4037–4043.PubMedGoogle Scholar
  337. Stramentinoli, G., and Pezzoli, C., 1983. S-Adenosyl-L-methionine uptake in mammalian cells, in Transmethylation (E. Usdin, R. T. Borchardt, and C. R. Creveling, eds.), North-Holland, Amsterdam, pp. 37–48.Google Scholar
  338. Sturman, J., 1980. Methionine metabolism in developing neural tissue, in Natural Sulfur Compounds: Novel Biochemical and Structural Aspects (D. Cavallini, G. E. Gaull, and V. Zappia, eds.), Plenum Press, New York, pp. 107–109.CrossRefGoogle Scholar
  339. Sturman, J. A., Gaull, G., and Raiha, N. C. R., 1970. Absence of cystathionase in human fetal liver: Is cystine essential? Science 169:74–76.PubMedCrossRefGoogle Scholar
  340. Sugimoto, Y., Toraya, T., and Fukui, S., 1976. Studies on metabolic role of 5′-methylthioadenosine in Ochromonas malhamensis and other microorganisms, Arch. Microbiol. 108:175–182.PubMedCrossRefGoogle Scholar
  341. Sung, M. L., and Fowden, L., 1971. Imino acid biosynthesis in Delonix regia, Phytochemistry 10:1523–1528.CrossRefGoogle Scholar
  342. Swiatek, V. R., Simon, L. N., and Chao, K. L., 1973. Nicotinamide methyl-transferase and S-adenosylmethionine: 5′-methylthioadenosine hydrolase. Control of transfer ribonucleic acid methylation, Biochemistry 12:4670–4674.PubMedCrossRefGoogle Scholar
  343. Symonds, G. W., and Brosnan, M. E., 1977. Subcellular-localization of putrescine-dependent S-adenosyl methionine decarboxylase in rat-liver, FEBS Lett. 84:385–387.PubMedCrossRefGoogle Scholar
  344. Tabor, C. W., and Tabor, H., 1976. 1.4-Diaminobutane (putrescine), spermidine, and spermine, Annu. Rev. Biochem. 45:285–306.PubMedCrossRefGoogle Scholar
  345. Tabor, C. W., and Tabor, H., 1984a. Polyamines, Annu. Rev. Biochem. 53:749–790.PubMedCrossRefGoogle Scholar
  346. Tabor, C. W., and Tabor, H., 1984b. Methionine adenosyltransferase (S-adenosylmethionine synthetase) and S-adenosylmethionine decarboxylase, Adv. Enzymol. Rel. Areas Mol. Biol. 56:251–282.Google Scholar
  347. Tabor, H., Rosenthal, S. M., and Tabor, C. W., 1958. The biosynthesis of spermidine and spermine from putrescine and methionine, J. Biol. Chem. 233:907–914.PubMedGoogle Scholar
  348. Tabor, H., Hafner, E. W., and Tabor, C. W., 1980. Construction of an Escherichia coli strain unable to synthesize putrescine, spermidine, or cadaverine—characterization of two genes controlling lysine decarboxylase, J. Bacteriol. 144:952–956.PubMedGoogle Scholar
  349. Tabor, H., and Tabor, C. W., 1972. Biosynthesis and metabolism of 1,4-diaminobutane, spermidine, spermine, and related amines, Adv. Enzymol. 36:203–268.PubMedGoogle Scholar
  350. Tallan, H. H., and Cohen, P. A., 1976. Methionine adenosyltransferase—kinetic-properties of human and rat-liver enzymes, Biochem. Med. 16:234–250.PubMedCrossRefGoogle Scholar
  351. Tallan, H. H., Sturman, J. A., Pascal, T. A., and Gaull, G. E., 1974. Cystathionine γ-synthesis from homocysteine and cysteine by mammalian tissue, Biochem. Med. 9:90–101.PubMedCrossRefGoogle Scholar
  352. Tanaka, H., Esaki, N., and Soda, K., 1977. Properties of L-methionine γ-lyase from Pseudomonas ovalis, Biochemistry 16:100–106.PubMedCrossRefGoogle Scholar
  353. Tanaka, H., Esaki, N., and Soda, K., 1983. Bacterial L-methionine γ-lyase: Characterization and application, in Sulfur Amino Acids: Biochemical and Clinical Aspects (K. Kuri-yama, R. J. Huxtable, and H. Iwata, eds.), Alan R. Liss Inc., New York, pp. 365–377.Google Scholar
  354. Tarver, H., and Schmidt, C. L. A., 1939. The conversion of methionine to cystine: Experiments with radioactive sulfur, J. Biol. Chem. 130:67–80.Google Scholar
  355. Taya, Y., Tanaka, Y., and Nishimura, S., 1978. 5′-AMP is a direct precursor of cytokinin in Dictyostelium discoideum, Nature 271:545–547.PubMedCrossRefGoogle Scholar
  356. Taylor, J. H., 1984. DNA Methylation and Cellular Differentiation, Springer-Verlag, New York.CrossRefGoogle Scholar
  357. Taylor, R. T., and Hanna, M. L., 1977. Folate-dependent enzymes in cultured Chinese hamster cells: Folylpolyglutamate synthetase and its absence in mutants auxotrophic for glycine + adenosine + thymidine, Arch. Biochem. Biophys. 181:331–344.PubMedCrossRefGoogle Scholar
  358. Taylor, R. T., and Weissbach, H., 1973. N5-Methyltetrahydrofolate-homocysteine methyltransferases, in The Enzymes, Vol. 9, 3rd Ed. (P. D. Boyer, ed.), Academic Press, New York, pp. 121–165.Google Scholar
  359. Taylor, R. T., Hanna, M. L., and Hutton, J. J., 1974. 5-Methyltetrahydrofolate homocysteine cobalamin methyltransferase in human bone marrow and its relationship to pernicious anemia, Arch. Biochem. Biophys. 165:787–795.PubMedCrossRefGoogle Scholar
  360. Thenen, S. W., and Stokstad, E. L. R., 1973. Effect of methionine on specific folate coenzyme pools in vitamin B12 deficient and supplemented rats, J. Nutr. 103:363–370.PubMedGoogle Scholar
  361. Thorndike, J., and Beck, W. S., 1977. Production of formaldehyde from N 5-methyltetrahydrofolate by normal and leukemic leukocytes, Cancer Res. 37:1125;–l 132.PubMedGoogle Scholar
  362. Toohey, J. I., 1977. Methylthio group cleavage from methylthioadenosine. Description of an enzyme and its relationship to the methylthio requirement of certain cells in culture, Biochem. Biophys. Res. Commun. 78:1273–1280.PubMedCrossRefGoogle Scholar
  363. Toohey, J. I., 1978. Methylthioadenosine phosphorylase deficiency in methylthio-dependent cells, Biochem. Biophys. Res. Commun. 83:27–35.PubMedCrossRefGoogle Scholar
  364. Toohey, J. I., and Cline, M. J., 1976. Alkylthiolation. Evidence for involvement in cell division, Biochem. Biophys. Res. Commun. 70:1275–1282.PubMedCrossRefGoogle Scholar
  365. Trackman, P. C., and Abeles, R. H., 1981. The metabolism of l-phospho-5-methylthioribose, Biochem. Biophys. Res. Commun. 103:1238–1244.PubMedCrossRefGoogle Scholar
  366. Trautner, T. A. (ed.), 1984. Methylation of DNA, Springer-Verlag, New York.Google Scholar
  367. Tuma, D. J., Barak, A. J., Schafer, D. E., and Sorrell, M. F., 1973. Possible interrelationship of ethanol metabolism and choline oxidation in the liver, Can. J. Biochem. 51:117–120.PubMedCrossRefGoogle Scholar
  368. Turner, B. B., Katz, R. J., Roth, K. A., and Carroll, B. J., 1978. Central elevation of phenylethanolamine N-methyltransferase activity following stress, Brain Res. 153:419–422.PubMedCrossRefGoogle Scholar
  369. Usdin, E., Borchardt, R. T., and Creveling, C. R. (eds.), 1978. Transmethylation, North-Holland, Amsterdam.Google Scholar
  370. Usdin, E., Borchardt, R. T., and Creveling, C. R. (eds.), 1979. Transmethylation, Elsevier/North-Holland, New York.Google Scholar
  371. Usdin, E., Borchardt, R. T., and Creveling, C. R. (eds.), 1982. Biochemistry of S-Adenosylmethionine and Related Compounds, MacMillan Press, London.Google Scholar
  372. Vance, D. E., and de Kruijff, B., 1980. The possible functional significance of phosphatidylethanolamine methylation, Nature 288:277–279.PubMedCrossRefGoogle Scholar
  373. Vanyushin, B. F., 1984. Replicative DNA methylation in animals and higher plants, Curr. Top. Microbiol. Immunol. 108:99–114.PubMedCrossRefGoogle Scholar
  374. Vanyushin, B. F., Belozersky, A. N., Kokurina, N. A., and Kadirova, D. X., 1968. 5-Methylcytosine and 6-methylaminopurine in bacterial DNA, Nature 218:1066–1067.PubMedCrossRefGoogle Scholar
  375. Vanyushin, B. F., Tkacheva, S. G., and Belozersky, A. N., 1970. Rare bases in animal DNA, Nature 225:948–949.PubMedCrossRefGoogle Scholar
  376. Vidal, A. J., and Stokstad, E. L. R., 1974. Urinary excretion of 5-methyltetrahydrofolate and liver S-adenosylmethionine levels in rats fed a vitamin B12-deficient diet, Biochim. Biophys. Acta. 362:245–257.PubMedCrossRefGoogle Scholar
  377. Whitney, P. A., and Morris, D. R., 1978. Polyamine auxotrophs of Saccharomyces cerevisiae, J. Bacteriol. 134:214–220.PubMedGoogle Scholar
  378. Wickner, R. B., Tabor, C. W., and Tabor, H., 1970. Purification of adenosylmethionine decarboxylase from Escherichia coli W: Evidence for covalently bound pyruvate, J. Biol. Chem. 245:2132–2139.PubMedGoogle Scholar
  379. Williams-Ashman, H. G., and Cannelakis, Z. N., 1979. Polyamines in mammalian biology and medicine, Perspect. Biol. Med. 22:421–453.PubMedGoogle Scholar
  380. Williams-Ashman, H. G., and Pegg, A. E., 1981. Aminopropyl group transfers in polyamine biosynthesis, in Polyamines in Biology and Medicine (D. R. Morris and L. J. Marton, eds.), Dekker, New York, pp. 43–73.Google Scholar
  381. Williams-Ashman, H. G., and Schenone, A., 1972. Methyl glyoxal bis(guanylhydrazone) as a potent inhibitor of mammalian and yeast S-adenosylmethionine decarboxylases, Biochem. Biophys. Res. Commun. 46:288–295.PubMedCrossRefGoogle Scholar
  382. Williams-Ashman, H. G., Jänne, J., Coppoc, G. L., Geroch, M. E., and Schenone, A., 1972. New aspects of polyamine biosynthesis in eukaryotic organisms, Adv. Enzyme Regul. 10:225–245.PubMedCrossRefGoogle Scholar
  383. Williams-Ashman, H. G., Seidenfeld, J., and Galletti, P., 1982. Trends in the biochemical pharmacology of 5′-deoxy-5′-methylthioadenosine, Biochem. Pharmacol. 31:277–288.PubMedCrossRefGoogle Scholar
  384. Womack, M., and Rose, W. C., 1941. The partial replacement of dietary methionine by cystine for purposes of growth, J. Biol. Chem. 141:375–379.Google Scholar
  385. Wong, F. F., and Carson, J. F., 1966. Isolation of S-methyl methionine sulfonium salt from fresh tomatoes, J. Agric. Food Chem. 14:247–249.CrossRefGoogle Scholar
  386. Yamakawa, M., Ikehara, N., and Schweiger, H. G., 1977. The occurrence of a 5′-methylthioadenosine nucleosidase in Acetabularia mediterrane a, in Progress in Acetabularia Research (C. L. F. Woodcock, ed.), Academic Press, New York, pp. 33–43.Google Scholar
  387. Yang, S. F., 1974. The biochemistry of ethylene: biogenesis and metabolism, in The Chemistry and Biochemistry of Plant Hormones (V. C. Runeckles, E., Sondheimer, and D. C. Walton, eds.), Academic Press, New York, pp. 131–164.Google Scholar
  388. Yang, H-Y. T., and Neff, N. H., 1976. Hydroxyindole O-methyltransferase: An immunochemical study of the neuronal regulation of the enzyme, Mol. Pharmacol. 12:433–439.PubMedGoogle Scholar
  389. Yu, Y. B., and Yang, S. F., 1980. Biosynthesis of wound ethylene, Plant Physiol. 66:281–285.PubMedCrossRefGoogle Scholar
  390. Yu, Y. B., Adams, D. O., and Yang, S. F., 1979. l-Aminocyclopropanecarboxylate synthase, a key enzyme in ethylene biosynthesis, Arch. Biochem. Biophys. 198:280–286.PubMedCrossRefGoogle Scholar
  391. Yung, K. H., Yang, S. F., and Schlenk, F., 1982. Methionine synthesis from 5-methylthioribose in apple tissue, Biochem. Biophys Res. Commun. 104:771–777.PubMedCrossRefGoogle Scholar
  392. Zappia, V., Carteni-Farina, M., and Porcelli, M., 1978a. Biochemical and chemical aspects of decarboxylated S-adenosylmethionine, in Transmethylation (E. Usdin, R. T. Borchardt, and C. R. Creveling, eds.), North-Holland, Amsterdam, pp. 95–104.Google Scholar
  393. Zappia, V., Oliva, A., Cacciapuoti, G., Galletti, P., Mignucci, G., and Carteni-Farina, M., 1978b. Substrate-specificity of 5′-methylthioadenosine phosphorylase from human prostate, Biochem. J. 175:1043–1050.PubMedGoogle Scholar
  394. Zappia, V., Porta, R., Carteni-Farina, M., DeRosa, M., and Gambacorta, A., 1978c. Polyamine distribution in eukaryotes—occurrence of sym-nor-spermidine and sym-norspermine in arthropods, FEBS Lett. 94:161–165.PubMedCrossRefGoogle Scholar
  395. Zappia, V., Cacciapuoti, G., Pontoni, G., and Oliva, A., 1980a. Mechanism of propylamine transfer reactions—kinetic and inhibition studies on spermidine synthase from Escherichia coli, J. Biol. Chem. 255:7276–7280.PubMedGoogle Scholar
  396. Zappia, V., Carteni-Farina, M., Cacciapuoti, G., Oliva, A., and Gambacorta, A., 1980b. Recent studies on the metabolism of 5′-methylthioadenosine, in Natural Sulfur Compounds: Novel Biochemical and Structural Aspects (D. Cavallini, G. E. Gaull, and V. Zappia, eds.), Plenum Press, New York, pp. 133–148.CrossRefGoogle Scholar
  397. Zieve, L., Doizaki, W. M., and Zieve, F. J., 1974. Synergism between mercaptans and ammonia or fatty acids in production of coma—possible role for mercaptans in pathogenesis of hepatic coma, J. Lab. Clin. Med. 83:16–28.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • Ryan J. Huxtable
    • 1
  1. 1.University of Arizona Health Sciences CenterTucsonUSA

Personalised recommendations