The Reduction of Sulfate and the Oxidation of Sulfide

  • Ryan J. Huxtable
Part of the Biochemistry of the Elements book series (BOTE, volume 6)

Abstract

The sulfhydryl-containing amino acids, Met and Cys, are needed by all life forms for protein synthesis and a myriad other tasks. Under the oxidizing conditions found over most of this planet, sulfur is present in the geosphere in the form of sulfate. Reduction of sulfate is expensive, requiring approximately 840 kJ·mol−1. The inability of multicellular animals to reduce sulfate to sulfide is part of a general lack of reductive capability. Such organisms are also unable to reduce nitrate to ammonia (142 kJ·mol−1) and carbon dioxide to carbohydrate (460 kJ·mol−1). The animal kingdom must rely on the plant and bacterial kingdoms for provision of the reduced forms of these elements.

Keywords

Neurospora Crassa Enteric Bacterium Sulfur Cycle Sulfite Reductase Methionine Biosynthesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abrams, W. R., and Schiff, J. A., 1973. Studies of sulfate utilization by algae. II. Enzyme-bound intermediate in reduction of adenosine-5-phosphosulfate (APS) by cell-free-extracts of wild-type Chlorella and mutants blocked for sulfate reduction, Arch. Mikrobiol. 94:1–10.PubMedGoogle Scholar
  2. Adair, F. W., 1966. Membrane-associated sulfur oxidation by the autotroph Thiobacillus thiooxidans, J. Bacteriol. 92:899–904.PubMedGoogle Scholar
  3. Akagi, J. M., 1976. Dissimilatory sulphate reduction, mechanistic aspects, in Biology of Inorganic Nitrogen and Sulfur (H. Bothe and A. Trebst, eds.), Springer, Berlin, pp. 178–187.Google Scholar
  4. Akagi, J. M., and Campbell, L. L., 1962. Studies on thermophilic sulfate-reducing bacteria. 3. Adenosine triphosphate-sulfurylase of Clostridium nigrificans and Desulfovibrio desulfuricans, J. Bacteriol. 84:1194-1201. Aminuddin, M., and Nicholas, D. J. D., 1973. Sulfide oxidation linked to the reduction of nitrate and nitrite in Thiobacillus denitrificans, Biochim. Biophys. Acta 325:81–93.Google Scholar
  5. Aminuddin, M., and Nicholas, D. J. D., 1974. Electron transfer during sulfide and sulfite oxidation in Thiobacillus denitrificans, J. Gen. Microbiol. 82:115–123.Google Scholar
  6. Antoniewski, J., and de Robichon-Szulmajster, H., 1973. Biosynthesis of methionine and its control in wild type and regulatory mutants of Saccharomyces cerevisiae, Biochimie 55:529–539.PubMedGoogle Scholar
  7. Asada, K., Tamura, G., and Bandurski, R. S., 1968. Methyl viologen-linked sulfite reductase from spinach leaves—a hemoprotein, Biochem. Biophys. Res. Commun. 30:554–568.PubMedGoogle Scholar
  8. Baliga, B. S., Vartak, H. G., and Jagannathan, V., 1961. Purification and properties of sulfurylase from Desulfovibrio de sulfuricans, J. Sci. Ind. Res. (India) 20C:33–40.Google Scholar
  9. Baross, J. A., and Deming, J. W., 1983. Growth of ‘black smoker’ bacteria at temperatures of at least 250°C, Nature 303:423–426.Google Scholar
  10. Baross, J. A., Lilley, M. D., and Gordon, L. I., 1982. Is the methane, hydrogen and carbon monoxide venting from submarine hydrothermal systems produced by thermophilic bacteria?, Nature 298:366–368.Google Scholar
  11. Bass-Becking, L. G. M., 1925. Studies on the sulphur bacteria, Ann. Bot. 39:613–650.Google Scholar
  12. Beebe, J. L., and Umbreit, W. W., 1971. Extracellular lipid of Thiobacillus thiooxidans, J. Bacteriol. 108:612–614.PubMedGoogle Scholar
  13. Bell, G. R., Lee, J. P., Peck, H. D., and LeGall, J., 1978. Reactivity of Desulfovibrio gigas hydrogenase towards artificial and natural electron donors, Biochimie 60:315–320.PubMedGoogle Scholar
  14. Biebl, H., and Pfennig, N., 1977. Growth of sulfate-reducing bacteria with sulfur as electron acceptor, Arch. Microbiol. 112:115–117.PubMedGoogle Scholar
  15. Binkley, F., 1955. Cystathione cleavage enzymes, in Methods in Enzymology, Vol. 2 (S. P. Colowick and N. O. Kaplan, eds.), Academic Press, New York, pp. 311–314.Google Scholar
  16. Black, W. J., and Wang, J. H.-C., 1970. Allosteric activation of glycogen phosphorylase b by nucleotides. II. Nucleotide structure in relation to mechanism of activation, Biochim. Biophys. Acta 212:257–268.PubMedGoogle Scholar
  17. Blakley, R. L., 1969. The Biochemistry of Folic Acid and Related Pteridines, Frontiers of Biology, Vol. 3, Wiley, New York, 569 pp.Google Scholar
  18. Bloomfield, C., 1969. Sulphate reduction in waterlogged soils, J. Soil Sci. 20:207–221.Google Scholar
  19. Board, P. A., 1976. Bacterial sulphate reduction and the anaerobic regulation of atmospheric oxygen, Atmos. Environ. 10:339–342.PubMedGoogle Scholar
  20. Bothe, H., and Trebst, A., 1981. Biology of Inorganic Nitrogen and Sulfur, Springer-Verlag, Berlin.Google Scholar
  21. Bowen, T. J., Happold, F. C., and Taylor, B. F., 1966. Studies on adenosine-5′-phospho-sulphate reductase from Thiobacillus denitrificans, Biochim. Biophys. Acta 118:566–576.PubMedGoogle Scholar
  22. Bradfield, G., Sommerfield, P., Meyn, T., Holby, M., Babcock, D., Bradley, D., and Segel, I. H., 1970. Regulation of sulfate transport in filamentous fungi, Plant Physiol. 46:120–121.Google Scholar
  23. Breton, A., and Surdin-Kejan, Y., 1977. Sulfate uptake in Saccharomyces cerevisiae biochemical and genetic study, J. Bacteriol. 132:224–232.PubMedGoogle Scholar
  24. Broda, E., 1975. The Evolution of Bioenergetic Processes, Pergamon Press, Oxford, 211 pp.Google Scholar
  25. Bruggemann, J., and Waldschmidt, M., 1962. Die serinsulfhydrase aus Hühnerleber: Ruckreaktion und vergleich mit der Cysteindesulfhydrase, Biochem. Z. 335:408–422.Google Scholar
  26. Bruggemann, J., Schlossmann, K., Merkenschlarger, M., and Waldschmidt, M., 1962. Zur Frage des Vorkommens der Serinsulfhydrase, Biochem. Z. 335:392.Google Scholar
  27. Brunngraber, E. C., 1958. Nucleotides involved in the enzymatic conjugation of phenols with sulfate, J. Biol. Chem. 233:472–477.PubMedGoogle Scholar
  28. Brunold, C., and Schiff, J. A., 1975. Assimilatory sulfate reduction in Euglena gracillis var bacillaris, Plant Physiol. 56:S36.Google Scholar
  29. Brunold, C., and Schiff, J. A., 1976. Studies of sulfate utilization by algae. 15. Enzymes of assimilatory sulfate reduction in Euglena and their cellular localization, Plant Physiol. 57:430–436.PubMedGoogle Scholar
  30. Brush, A., and Paulus, H., 1971. Enzymic formation of 0-acetylhomoserine in Bacillus subtilis and its regulation by methionine and S-adenosylmethionine. Biochem. Biophys. Res. Commun. 45:735–741.PubMedGoogle Scholar
  31. Brush, A. W., and Paulus, H., 1973. Regulation of homoserine transacetylase in Bacillus polymyxa, Fed. Proc. 32:463.Google Scholar
  32. Bunker, H. J., 1936. A Review of the Physiology and Biochemistry of the Sulphur Bacteria, HM Stationery Office, London.Google Scholar
  33. Burnell, J. N., and Whatley, F. R., 1977. Sulfur metabolism in Paracoccus denitrificans— purification, properties and regulation of serine transacetylase, O-acetylserine sulfhy-drylase and ß-cystathionase, Biochim. Biophys. Acta 481:246–265.PubMedGoogle Scholar
  34. Burnell, J. N., John, P., and Whatley, F. R., 1975. Reversibility of active sulfate transport in membrane vesicles of Paracoccus denitrificans, Biochem. J. 150:527–536.PubMedGoogle Scholar
  35. Burton, E. G., and Metzenberg, R. L., 1972. Novel mutation causing derepression of several enzymes of sulfur metabolism in Neurospora crassa, J. Bacteriol. 109:140–151.PubMedGoogle Scholar
  36. Burton, E., and Sakami, W., 1969. Formation of methionine from the monoglutamate form of methyltetrahydrofolate by higher plants, Biochem. Biophys. Res. Commun. 36:228–234.PubMedGoogle Scholar
  37. Burton, E., Selhub, J., and Sakami, W., 1969. Substrate specificity of 5-methyltetrahy-dropteroyltriglutamate-homocysteine methyltransferase, Biochem. J. 111:793–795.PubMedGoogle Scholar
  38. Cauthen, S. E., Pattison, J. R., and Lascelles, J., 1967. Vitamin B12 in photosynthetic bacteria and methionine synthesis by Rhodopseudomonas spheroides, Biochem. J. 102:774–781.PubMedGoogle Scholar
  39. Chambers, L. A., and Trudinger, P. A., 1971. Cysteine and S-sulfocysteine biosynthesis in bacteria, Arch. Mikrobiol. 77:165–184.PubMedGoogle Scholar
  40. Charles, A. M., and Suzuki, I., 1966a. Purification and properties of sulfite: Cytochrome c oxidoreductase from Thiobacillus novellus, Biochim. Biophys. Acta 128:522–534.Google Scholar
  41. Charles, A. M., and Suzuki, I., 1966b. Mechanism of thiosulfate oxidation by Thiobacillus novellus, Biochim. Biophys. Acta 128:510–521.Google Scholar
  42. Cherest, H., Eichler, F., and de Robichon-Szulmajster, H., 1969. Genetic and regulatory aspects of methionine biosynthesis in Saccharomyces cerevisiae, J. Bacteriol. 97:328–336.PubMedGoogle Scholar
  43. Cherest, H., Surdin-Kerjan, Y., Antoniewski, J., and de Robichon-Szulmajster, H., 1971. Methionine-mediated repression in Saccharomyces cerevisiae. Pleiotropic regulatory system involving methionyl transfer ribonucleic acid and the product of gene eth2, J. Bacteriol. 106:758–772.PubMedGoogle Scholar
  44. Cherest, H., Surdin-Kerjan, Y., Antoniewski, J., and de Robichon-Szulmajster, H., 1973. S-Adenosylethionine-mediated repression of methionine biosynthetic enzymes in Saccharomyces cerevisiae, J. Bacteriol. 114:928–933.PubMedGoogle Scholar
  45. Cole, J. S., and Aleem, M. I. H., 1970. Oxidative phosphorylation in Thiobacillus novellus, Biochem. Biophys. Res. Commun. 38:736–743.PubMedGoogle Scholar
  46. Cole, J. S., and Aleem, M. I. H., 1973. Electron transport-linked compared with proton-induced ATP generation in Thiobacillus novellus, Proc. Natl. Acad. Sci. USA 70:3571–3575.PubMedGoogle Scholar
  47. Collins, J. M., and Monty, K. J., 1975. Cysteine biosynthesis in Salmonella typhimurium— presence of ATP-sulfurylase and APS-kinase in various cysteine-requiring mutants, Can. J. Biochem. 53:1118–1121.PubMedGoogle Scholar
  48. Cuppoletti, J., and Segel, I. H., 1975. Kinetic analysis of active membrane transport systems—equations for net velocity and isotope-exchange, J. Theor. Biol. 53:125–144.PubMedGoogle Scholar
  49. Datko, A. H., Giovanelli, J., and Mudd, S. H., 1973. Homocysteine synthesis in green plants. 2. Utilization of homoserine esters by cystathionine γ-synthase, Plant Physiol. 51:S50.Google Scholar
  50. Datko, A. H., Mudd, S. H., and Giovanelli, J., 1977. Homocysteine biosynthesis in green plants—studies of homocysteine-forming sulhydrylase, J. Biol. Chem. 252:3436–3445.Google Scholar
  51. Davis, E. A., and Johnson, E. J., 1967. Phosphorylation coupled to the oxidation of sulfite and 2-mercaptoethanol in extracts of Thiobacillus thioparus, Can. J. Microbiol. 13:873–884.PubMedGoogle Scholar
  52. Dawes, J., and Foster, M. A., 1971. Vitamin B12 and methionine synthesis in Escherichia coli, Biochim. Biophys. Acta 237:455–464.PubMedGoogle Scholar
  53. Delavier-Klutchko, C., and Flavin, M., 1965a. Role of a bacterial cystathionine ß-cleavage enzyme in disulfide decomposition, Biochim. Biophys. Acta 99:315–311.Google Scholar
  54. Delavier-Klutchko, C., and Flavin, M., 1965b. Enzymatic synthesis and cleavage of cystathionine in fungi and bacteria, J. Biol. Chem. 240:2537–2549.PubMedGoogle Scholar
  55. De Meio, R. H., 1975. Sulfate activation and transfer, in Metabolic Pathways, Vol. VII, Metabolism of Sulfur Compounds, 3rd Ed. (D. M. Greenberg, ed.), Academic Press, New York, pp. 287–358.Google Scholar
  56. Dilworth, G. L., and Bandurski, R. S., 1977. Activation of selenate by adenosine 5′-tri-phosphate sulfurylase from Saccharomyces-cerevisiae, Biochem. J. 163:521–529.PubMedGoogle Scholar
  57. Dodd, W. A., and Cossins, E. A., 1970. Homocysteine-dependent transmethylases catalyzing the synthesis of methionine in germinating pea seeds, Biochim. Biophys. Acta 201:461–470.PubMedGoogle Scholar
  58. Drake, H. L., and Akagi, J. M., 1978. Dissimilatory reduction of bisulfite by Desulfovibrio vulgaris, J. Bacteriol. 136:916–923.PubMedGoogle Scholar
  59. Dreyfuss, J., 1964. Characterization of a sulfate-and thiosulfate-transporting system in Salmonella typhimurium, J. Biol. Chem. 239:2292–2297.PubMedGoogle Scholar
  60. Dreyfuss, J., and Monty, K. J., 1963. The biochemical characterization of cysteine-requiring mutants of Salmonella typhimurium, J. Biol. Chem. 238:1019–1024.Google Scholar
  61. Drozd, J. W., 1977. Energy conservation in Thiobacillus neapolitanus C: Sulfide and sulfite oxidation, J. Gen. Microbiol. 98:309–312.PubMedGoogle Scholar
  62. Fankhauser, H., and Schiff, J. A., 1980. Further purification and properties of adenylyl sulfate (APS): ammonia adenylyl transferase (APSAT) from Chlorella, Plant Physiol. 65:S17.Google Scholar
  63. Fankhauser, H., Garber, L. J., and Schiff, J. A., 1979. Adenylyl sulfate (APS)-ammonia adenylyl transferase (APSAT) forming adenosine 5′ phosphoramidate (APA) from APS and ammonia, Plant Physiol. 63:S162.Google Scholar
  64. Fauque, G. D., Barton, L. L., and Le Gall, J., 1980. Oxidative phosphorylation linked to dissimilatory reduction of elemental sulphur by Desulfovibrio, in Sulphur in Biology, Ciba Found. Symp. 72, Excerpta Medica, Amsterdam, pp. 71–86.Google Scholar
  65. Findley, J. E., and Akagi, J. M., 1969. Evidence for thiosulfate formation during sulfite reduction by Desulfovibrio vulgaris, Biochem. Biophys. Res. Commun. 36:266–271.PubMedGoogle Scholar
  66. Findley, J. E., and Akagi, J. M., 1970. Role of thiosulfate in bisulfite reduction as catalysed by Desulfovibrio vulgaris, J. Bacteriol. 103:741–744.PubMedGoogle Scholar
  67. Fischer, U., and Trüper, H. G., 1977. Cytochrome c-550 of Thiocapsa roseopersicina: Properties and reduction by sulfide, FEMS Microbiol. Lett. 1:87–90.Google Scholar
  68. Fisher, G. A., 1957. The cleavage and synthesis of cystathionine in wild type and mutant strains of Neurospora crassa Biochim. Biophys. Acta 25:50–55.Google Scholar
  69. Fjerdingstad, E., 1979. Sulfur Bacteria, American Society for Testing and Materials, Philadelphia.Google Scholar
  70. Flavin, M., 1975. Methionine biosynthesis, in Metabolic Pathways, Vol. VII, Metabolism of Sulfur Compounds, 3rd Ed. (D. M. Greenberg, ed.), Academic Press, New York, pp. 457–504.Google Scholar
  71. Flavin, M., and Slaughter, C., 1964. Cystathionine cleavage enzymes of Neurospora, J. Biol. Chem. 239:2212–2219.PubMedGoogle Scholar
  72. Flavin, M., and Slaughter, C., 1967. Enzymatic synthesis of homocysteine or methionine directly from O-succinylhomoserine, Biochim. Biophys. Acta 132:400–405.PubMedGoogle Scholar
  73. Flavin, M., Delavier-Klutchko, C., and Slaughter, C., 1964. Succinic ester and amide of homoserine: Some spontaneous and enzymatic reactions, Science 143:50–52.PubMedGoogle Scholar
  74. Fox, G. E., Stackebrandt, E., Hespell, R. B., Gibson, J., Maniloff, J., Dyer, T. A., Wolfe, R. S., Balch, W. E., Tanner, R. S., Magrum, L. J., Zablen, L. B., Blakemore, R., Gupta, R., Bonen, L., Lewis, B. J., Stahl, D. A., Luehrsen, K. R., Chen, K. N., and Woese, C. R., 1980. The phylogeny of prokaryotes, Science 209:457–463.PubMedGoogle Scholar
  75. Fujimoto, D., and Ishimoto, M., 1961. Sulfate reduction in Escherichia coli, J. Biochem. 50:533–537.PubMedGoogle Scholar
  76. Giovanelli, J., and Mudd, S. H., 1966. Enzymatic synthesis of cystathionine by extracts of spinach, requiring O-acetylhomoserine or O-succinylhomoserine, Biochem. Biophys. Res. Commun. 25:366–377.PubMedGoogle Scholar
  77. Giovanelli, J., and Mudd, S. H., 1967. Synthesis of homocysteine and cysteine by enzyme extracts of spinach, Biochem. Biophys. Res. Commun. 27:150–156.PubMedGoogle Scholar
  78. Giovanelli, J., and Mudd, S. H., 1971. Transsulfuration in higher plants. Partial purification and properties of ß-cystathionase of spinach, Biochim. Biophys. Acta 227:654–670.PubMedGoogle Scholar
  79. Giovanelli, J., Mudd, S. H., and Datko, A. H., 1973. Homocysteine synthesis in green plants—enzymic esterification of homoserine, Plant Physiol. 51:S50.Google Scholar
  80. Goldhaber, M. B., and Kaplan, I. R., 1974. Sulfur cycle, in The Sea, Vol. 5 (M. N. Hill, A. E. Maxwell, and E. D. Goldberg, eds.), Wiley, New York, pp. 569–655.Google Scholar
  81. Granat, L., Hallberg, R. O., and Rodhe, H., 1976. The global sulphur cycle, in Nitrogen, Phosphorus and Sulphur—Global Cycles (B. H. Svensson and R. Soderlund, eds.), Ecol. Bull. (Stockholm) 20:89–134.Google Scholar
  82. Gregory, J. D., and Robbins, P. W., 1960. Metabolism of sulfur compounds (sulfate metabolism), Annu. Rev. Biochem. 29:347–364.PubMedGoogle Scholar
  83. Griffiths, J. M., and Daniel, L. J., 1969. Methionine biosynthesis in Ochromonas malha-mensis, Arch. Biochem. Biophys. 134:463–472.PubMedGoogle Scholar
  84. Guggenheim, S., 1971. ß-Cystathionase (Salmonella), in Methods in Enzymology, Vol. 17B (S. P. Colowick, ed.), Academic Press, New York, pp. 439–442.Google Scholar
  85. Hageage, G. J., Jr., Eanes, E. D., and Gherna, R. L., 1970. X-ray diffraction studies of the sulfur globules accumulated by Chromatium species, J. Bacteriol. 101:464–469.PubMedGoogle Scholar
  86. Hallberg, R. O., 1972. Sedimentary sulfide mineral formation—an energy circuit system approach, Mineral Deposita 7:189–201.Google Scholar
  87. Hawes, C. S., and Nicholas, D. J. D., 1973. Adenosine-5′-triphosphate sulfurylase from Saccharomyces cerevisiae, Biochem. J. 133:541–550.PubMedGoogle Scholar
  88. Hendrickson, H. R., and Conn, E. E., 1969. Cyanide metabolism in higher plants. 4. Purification and properties of ß-cyanoalanine synthase of blue lupine, J. Biol. Chem. 244:2632–2640.PubMedGoogle Scholar
  89. Hensel, G., and Trüper, H. G., 1976. Cysteine and S-sulfocysteine biosynthesis in phototrophic bacteria, Arch. Microbiol. 109:101–103.PubMedGoogle Scholar
  90. Hensel, G., and Trüper, H. G., 1981. O-Acetylserine sulfhydrylase and O-sulfocysteine synthase activities of Chromatium vinosum, Arch. Microbiol. 130:228–233.Google Scholar
  91. Hensel, G., and Trüper, H. G., 1983. O-Acetylserine sulfhydrylase and S-sulfocysteine synthase activities of Rhodospirillum tenue, Arch. Microbiol. 134:227–23PubMedGoogle Scholar
  92. Horowitz, N. H., 1947. Methionine synthesis in Neurospora. The isolation of cystathionine, J. Biol. Chem. 171:255–264.Google Scholar
  93. Huovinen, J. A., and Gustafsson, B. E., 1967. Inorganic sulfate sulphite and sulphide as sulphur donors in biosynthesis of sulphur amino acids in germ-free and conventional rats, Biochim. Biophys. Acta 136:441–447.PubMedGoogle Scholar
  94. Hussey, C., Orsi, B. A., Scott, J., and Spencer, B., 1965. Mechanism of choline sulphate utilization in fungi, Nature 207:632–634.PubMedGoogle Scholar
  95. Iizuka, H., Adachi, K., Halprin, K. M., and Levine, V., 1976. Adenosine and adenine nucleotides stimulation of skin (epidermal) adenylate cyclase, Biochim. Biophys. Acta 444:685–693.PubMedGoogle Scholar
  96. Imagawa, T., and Tsugita, A., 1972. Studies on primary structure of sulfate binding protein from Salmonella typhimurium. 1. Tryptic digestion, J. Biochem. (Tokyo) 72:889–910.Google Scholar
  97. Ingvorsen, K., and Jørgensen, B. B., 1982. Seasonal variation in hydrogen sulfide emission to the atmosphere from intertidal sediments in Denmark, Atmos. Environ. 16:855–865.Google Scholar
  98. Ishimoto, M., and Fujimoto, D., 1961. Biochemical studies on sulfate-reducing bacteria. X. Adenosine-5′-phosphosulfate reductase, J. Biochem. (Tokyo) 50:299–304.Google Scholar
  99. Jones, H. E., and Skyring, G. W., 1974. Reduction of sulfite catalyzed by desulfoviridin from Desulfovibrio gigas, Aust. J. Biol. Sci. 27:7–14.PubMedGoogle Scholar
  100. Jones, H. E., and Skyring, G. W., 1975. Effect of enzymic assay conditions on sulfite reduction catalyzed by desulfoviridin from Desulfovibrio gigas, Biochim. Biophys. Acta 337:52–60.Google Scholar
  101. Jones, G. E., and Starkey, R. L., 1961. Surface-active substances produced by Thiobacillus thiooxidans, J. Bacteriol. 82:788–789.PubMedGoogle Scholar
  102. Jones, K. M., Guest, J. R., and Woods, D. D., 1961. Folic acid and the synthesis of methionine by extracts of Escherichia coli, Biochem. J. 79:566–574.PubMedGoogle Scholar
  103. Jørgensen, B. B., 1982. Ecology of the bacteria of the sulfur cycle with special reference to anoxic-oxic interface environments, Philos. Trans. R. Soc. London, Ser. B 298:543–561.PubMedGoogle Scholar
  104. Jørgensen, B. B., and Fenchel, T., 1974. Sulfur cycle of a marine sediment model system, Marine Biol. 24:189–201.Google Scholar
  105. Joyce, J., 1916. Portrait of an Artist as a Young Man, B. W. Huebsch, New York (see, e.g., Folio Society Edition, London, 1965, pp. 126-141).Google Scholar
  106. Junge, C., 1972. Sulphur supplies of atmospheric origin, in Symposium international sur le Soufre en Agriculture, Ann. Agron. Numéro hors série: 235-247.Google Scholar
  107. Kabach, H. R., 1970. Transport, Annu. Rev. Biochem. 39:561–598.Google Scholar
  108. Kaplan, I. R., 1956. Evidence of microbiological activity in some of the geothermal regions of New Zealand, NZ J. Sci. Technol. 37:639–662.Google Scholar
  109. Kaplan, M. M., and Flavin, M., 1966a. Cystathionine γ-synthase of Salmonella. Catalytic properties of a new enzyme in bacterial methionine biosynthesis, J. Biol. Chem. 241:4463–4471.PubMedGoogle Scholar
  110. Kaplan, M. M., and Flavin, M., 1966b. Cystathionine γ-synthase of Salmonella. Structural properties of a new enzyme in bacterial methionine biosynthesis, J. Biol. Chem. 241:5781–5789.PubMedGoogle Scholar
  111. Kaplan, M. M., and Guggenheim, S., 1971. Cystathionine γ-synthase (Salmonella), in Methods in Enzymology, Vol. 17B (S. P. Colowick, ed.), Academic Press, New York, pp. 425–433.Google Scholar
  112. Kaplan, I. R., and Rittenberg, S. C., 1964. Microbiological fractionation of sulphur isotopes, J. Gen. Microbiol. 34:195–212.PubMedGoogle Scholar
  113. Kase, H., Nakayama, N., and Kinoshita, S., 1970. Production of O-succinyl-L-homoserine by auxotrophic mutants of Aerobacter aerogenes, Agric. Biol. Chem. 34:274–281.Google Scholar
  114. Katzen, H. M., and Buchanan, J. M., 1965. Enzymatic synthesis of the methyl group of methionine. VIII. Repression-depression, purification, and properties of 5,10-methylene-tetrahydrofolate reductase from Escherichia coli, J. Biol. Chem. 240:825–835.PubMedGoogle Scholar
  115. Kellog, W. W., Cadle, R. D., Allen, E. R., Lazrus, A. L., and Martell, E. A., 1972. The sulphur cycle, Science 175:587–596.Google Scholar
  116. Kelly, D. P., 1978. Bioenergetics of chemolithotrophic bacteria, in Companion to Microbiology (A. T. Bull and P. M. Meadow, eds.), Longman, London, pp. 363–386.Google Scholar
  117. Kelly, D. P., 1980. The sulphur cycle: Definition, mechanisms and dynamics, in Sulphur in Biology, Ciba Found. Symp. 72, Excerpta Medica, Amsterdam, pp. 3–18.Google Scholar
  118. Kelly, D. P., 1982. Biochemistry of the chemolithotrophic oxidation of inorganic sulfur, Philos. Trans. R. Soc. London Ser. B 298:499–528.Google Scholar
  119. Kelly, D. P., and Syrett, P. J., 1964. The effects of uncoupling agents on carbon dioxide fixation by a Thiobacillus, J. Gen. Microbiol. 34:307–317.PubMedGoogle Scholar
  120. Kerr, D. S., 1971. O-Acetylhomoserine sulfhydrylase from Neurospora. Purification and consideration of its function in homocysteine and methionine synthesis, J. Biol. Chem. 246:95–102.PubMedGoogle Scholar
  121. Kerr, D. S., and Flavin, M., 1969. Inhibition of cystathionine γ-synthase by S-adenosyl-methionine: Control mechanism for methionine synthesis in Neurospora, Biochim. Biophys.Acta 177:177–179.PubMedGoogle Scholar
  122. Kerr, D. S., and Flavin, M., 1970. Regulation of methionine synthesis and the nature of cystathionine γ-synthase in Neurospora, J. Biol. Chem. 245:1842–1855.PubMedGoogle Scholar
  123. Kerr, D., and Nagai, S., 1967. Enzymatic formation of acetylhomoserine and its utilization for methionine synthesis, Fed. Proc. 26:387.Google Scholar
  124. Kobayashi, K., Tachibana, S., and Ishimoto, M., 1969. Intermediary formation of trithionate in sulfite reduction by a sulfate-reducing bacterium, J. Biochem. (Tokyo) 65:155–157.Google Scholar
  125. Kobayashi, K., Takahaski, E., and Ishimoto, M., 1972. Biochemical studies on sulfate-reducing bacteria. XI. Purification and some properties of sulfite reductase, desulfoviridin, J. Biochem. (Tokyo) 72:879–887.Google Scholar
  126. Kobayashi, K., Seki, Y., and Ishimoto, M., 1974. Biochemical studies on sulfate-reducing bacteria. XIII. Sulfite reductase from Desulfovibrio vulgaris. Mechanism of trithionate, thiosulfate, and sulfide formation and enzymic properties, J. Biochem. 75:519–529.PubMedGoogle Scholar
  127. Kran, Von G., Schlote, F. W., and Schlegel, H. G., 1963. Cytologische Untersuchungen an Chromatium okenii Perty, Naturwissenschaften 50:728–730.Google Scholar
  128. Kredich, N. M., 1971. Regulation of L-cysteine biosynthesis in Salmonella typhimurium. 1. Effects of growth on varying sulfur sources and O-acetyl-L-serine on gene expression, J. Biol. Chem. 246:3474–3484.PubMedGoogle Scholar
  129. Kredich, N. M., and Tomkins, G. M., 1966. Enzymic synthesis of L-cysteine in Escherichia coli and Salmonella typhimurium, J. Biol. Chem. 241:4955.PubMedGoogle Scholar
  130. Kredich, N. M., Becker, M. A., and Tomkins, G. M., 1969. Purification and characterization of cysteine synthetase, a bifunctional protein complex from Salmonella typhimurium, J. Biol. Chem. 244:2428–2439.PubMedGoogle Scholar
  131. Kuenen, J. G., and Tuovinen, O. H., 1981. The genera Thiobacillus and Thiomicrospira, in The Prokaryotes (M. P. Starr, H. Stolp, H. G. Trüper, A. Balows, and H. G. Schlegel, eds.), Springer, Berlin, pp. 1023–2036.Google Scholar
  132. Kutzbach, C., and Stokstad, E. L. R., 1967. Purification and some properties of the allosteric methyl-tetrahydrofolate: NADP oxidoreductase from rat liver, Fed. Proc. 26:559.Google Scholar
  133. Kuznetsov, S. I., Ivanov, M. V., and Lyalikova, N. N., 1963. Introduction to Geological Microbiology, McGraw-Hill, New York, 252 pp.Google Scholar
  134. Laanbroek, H. J., Stal, L. J., and Veldkamp, H., 1978. Utilization of hydrogen and formate by Campylobacter species under aerobic and anaerobic conditions, Arch. Microbiol. 119:99–102.PubMedGoogle Scholar
  135. Laduron, P., 1972. N-Methylation of dopamine to epinine in brain tissue using N-methyl-tetrahydrofolic acid as the methyl donor, Nature (London), New Biol. 238:212–213.Google Scholar
  136. Lago, B.D., and Demain, A. L., 1969. Alternate requirement for vitamin B12 or methionine in mutants of Pseudomonas denitrificans, a vitamin B12-producing bacterium, J. Bacteriol. 99:347–349.PubMedGoogle Scholar
  137. Langridge, R., Shinagawa, H., and Pardee, A. B., 1970. Sulfate-binding protein from Salmonella typhimurium: Physical properties, Science 169:59–61.PubMedGoogle Scholar
  138. Lawrence, D. E., 1972. Regulation of the methionine feedback-sensitive enzyme in mutants of Salmonella typhimurium, J. Bacteriol. 109:8–11.PubMedGoogle Scholar
  139. Lee, J. P., Yi, C. S., Le Gall, J., and Peck, H. D., 1973. Isolation of a new pigment desulforubidin, from Desulfovibrio desulfuricans (Norway strain) and its role in sulfite reduction, J. Bacteriol. 115:453–455.PubMedGoogle Scholar
  140. Lee, L. W., Ravel, J. M., and Shive, W., 1966. Multimetabolite control of a biosynthetic pathway by sequential metabolites, J. Biol. Chem. 241:5479–5480.PubMedGoogle Scholar
  141. Le Gall, J., and Postgate, J. R., 1973. The physiology of sulphate-reducing bacteria, Adv. Microb. Physiol. 10:81–133.Google Scholar
  142. Le Gall, J., DerVartanian, D. V., and Peck, H. D., 1979. Flavoproteins, iron proteins and hemoproteins as electron-transfer components of the sulfate reducing bacteria, Curr. Top. Bioenerg. 9:237–265.Google Scholar
  143. Lewis, D., 1954. The reduction of sulphate in the rumen of the sheep, Biochem. J. 56:391–399.PubMedGoogle Scholar
  144. London, J., and Rittenberg, S. C., 1964. Path of sulfur in sulfide and thiosulfate oxidation by thiobacilli, Proc. Natl. Acad. Sci. USA 52:1183–1190.PubMedGoogle Scholar
  145. Lukaszkiewicz, Z., and Pieniazek, N. J., 1972. Mutations increasing specificity of sulfate permease in Aspergillus nidulans, Bull. Acad. Pol. Sci. 20:833–836.Google Scholar
  146. Mangum, J. H., and Scrimgeour, K. G., 1962. Cofactor requirement and intermediates in methionine biosynthesis, Fed. Proc. 21:242.Google Scholar
  147. Marzluf, G. A., 1970. Genetic and biochemical studies of distinct sulfate permease species in different developmental stages of Neurospora crassa, Arch. Biochem. Biophys. 138:254–263.PubMedGoogle Scholar
  148. Marzluf, G. A., 1972. Control of synthesis activity and turnover of enzymes of sulfur metabolism in Neurospora crassa, Arch. Biochem. Biophys. 150:714–724.PubMedGoogle Scholar
  149. McCready, R. G. L., 1975. Sulfur isotope fractionation by Desulfovibrio and Desulfoto-maculum species, Geochim. Cosmochim. Acta 39:1395–1401.Google Scholar
  150. Metzenberg, R. L., 1972. Genetic regulatory systems in Neurospora, Annu. Rev. Genet. 6:111–132.PubMedGoogle Scholar
  151. Millet, J., 1955. Le sulfite comme intermédiaire dans la réduction du sulfate par Desulfovibrio desulfuricans, C. R. Acad. Sci. 240:253–255.Google Scholar
  152. Milner, L., Whitfield, C., and Weissbach, H., 1969. Effect of L-methionine and vitamin B12 on methionine biosynthesis in Escherichia coli, Arch. Biochem. Biophys. 133:413–419.PubMedGoogle Scholar
  153. Milton, J., 1667. Paradise Lost, Book 1, 44-69; 227-237 (see, e.g., editions of John Sharpe, London, 1816; A. Spottiswoode, London, 1842; Mentor Books, New York, 1961).Google Scholar
  154. Mitchell, P., 1970. Membranes of cells and organelles: morphology, transport, and metabolism, in Organization and Control in Prokaryotic and Eukaryotic Cells (H. P. Charles and B. C. J. G. Knight, eds.), Cambridge University Press, Cambridge, p. 121.Google Scholar
  155. Miyajima, R., and Shiio, I., 1973. Regulation of aspartate family amino acid biosynthesis in Brevibacteriumflavum. VII. Properties of homoserine O-transacetylase, J. Biochem. (Tokyo) 73:1061–1068.Google Scholar
  156. Moore, D. P., Thompson, J. F., and Smith, I. K., 1969. Utilization of S-methylcysteine and methylmercaptan by methionineless mutants of Neurospora and the pathway of their conversion to methionine. I. Growth studies, Biochim. Biophys. Acta 184:124–129.PubMedGoogle Scholar
  157. Moriarty, D. J. W., and Nicholas, D. J. D., 1969. Enzymic sulfide oxidation by Thiobacillus concretivorus, Biochim. Biophys. Acta 184:114–123.PubMedGoogle Scholar
  158. Moriarty, D. J. W., and Nicholas, D. J. D., 1970. Products of sulfide oxidation in extracts of Thiobacillus concretivorus, Biochim. Biophys. Acta 197:143–151.PubMedGoogle Scholar
  159. Morningstar, J. F., Jr., and Kisliuk, R. L., 1965. Interrelations between two pathways of methionine biosynthesis in Aerobacter oerogenes, J. Gen. Microbiol. 39:43–51.PubMedGoogle Scholar
  160. Murooka, Y., Seto, K., and Harada, T., 1970. O-Alkylhomoserine synthesis from O-ace-tylhomoserine and alcohol, Biochem. Biophys. Res. Commun. 41:407–414.PubMedGoogle Scholar
  161. Murphy, J. T., and Spence, K. D., 1972. Transport of S-adenosylmethionine in Saccha-romyces cerevisiae, J. Bacteriol. 109:499–504.PubMedGoogle Scholar
  162. Murphy, M. J., Siegel, L. M., Kamin, H., DerVartanian, D. V., Lee, J. P., Le Gall, J., and Peck, H. D., 1973. An iron tetrahydroporphyrin prosthetic group common to both assimilatory and dissimilatory sulfite reductases, Biochem. Biophys. Res. Commun. 54:82–88.PubMedGoogle Scholar
  163. Nagai, S., and Flavin, M., 1967. Acetyl homoserine. Intermediate in the fungal biosynthesis of methionine, J. Biol. Chem. 242:3884–3895.PubMedGoogle Scholar
  164. Nagai, S., and Flavin, M., 1971. Synthesis of O-acetylhomoserine, in Methods in Enzy-mology, Vol. 17B (S. P. Colowick, ed.), Academic Press, New York, pp. 423–424.Google Scholar
  165. Naiki, N., 1965. Some properties of sulfite reductase from yeast, Plant and Cell Physiol. 6:179–194.Google Scholar
  166. Nakayama, K., Kase, H., and Kinoshita, S., 1969. Accumulation of O-acetyl-L-homoserine, an intermediate in methionine biosynthesis, by methionine auxotrophs of Arthrobacter and Bacillus species, Agric. Biol. Chem. 33:1664–1665.Google Scholar
  167. Nicolson, G. L., and Schmidt, G. L., 1971. Structure of the Chromatium sulfur particle and its protein membrane, J. Bacteriol. 105:1142–1148.PubMedGoogle Scholar
  168. Ohmori, H., Sato, K., Shimizu, K., and Fukui, S., 1971. Corrinoids and porphyrins in Streptomycetes. IV. Confirmation of a cobalalamin-dependent methionine synthesizing system in Streptomyces olivaceus, Agric. Biol. Chem. 35:338–343.Google Scholar
  169. Okazaki, T., Nakazawa, A., and Hayaishi, O., 1968. Interaction between regulatory enzymes and effectors. II. Effect of adenosine 5′-monophosphate analogs on glycogen phosphorylase b, J. Biol. Chem. 243:5266–5271.PubMedGoogle Scholar
  170. Owens, L. D., Thompson, J. F., Pitcher, J. F., and Williams, T., 1972. Structure of rhi-zobitoxine, an antimetabolic enol-ether amino acid from Rhizobium (japonicum), J. Chem. Soc, Chem. Commun. 1972:714.Google Scholar
  171. Ozaki, H., and Shiio, I., 1982. Methionine biosynthesis in Brevibacteriumflavum: Properties and essential role of O-acetylhomoserine sulfhydrylase, J. Biochem. (Tokyo) 91:1163–1171.Google Scholar
  172. Pardee, A. B., 1966. Purification and properties of a sulfate-binding protein from Salmonella typhimurium, J. Biol. Chem. 241:5886–5892.PubMedGoogle Scholar
  173. Pardee, A. B., 1967. Crystallization of a sulfate-binding protein (permease) from Salmonella typhimurium, Science 156:1627–1628.PubMedGoogle Scholar
  174. Pardee, A. B., and Watanabe, K., 1968. Location of sulfate-binding protein in Salmonella typhimurium, J. Bacteriol. 96:1049–1054.PubMedGoogle Scholar
  175. Pasternak, C. A., Ellis, R. J., Jones-Mortimer, M. C., and Crichton, C. E., 1965. Control of sulphate reduction in bacteria, Biochem. J. 96:270–275.PubMedGoogle Scholar
  176. Paszewski, A., and Grobski, J., 1973. ß-Cystathionase and O-acetylhomoserine sulfhydry-lase as the enzymes of alternative methionine biosynthesis pathways in Aspergillus nidulans, Acta Biochim. Pol. 20:159–168.PubMedGoogle Scholar
  177. Peck, H. D., 1968. Energy-coupling mechanisms in chemolithotrophic bacteria, Annu. Rev. Microbiol. 22:489–518.PubMedGoogle Scholar
  178. Peck, H. D., 1974. Sulfation linked to ATP cleavage, in The Enzymes, Vol. 10, 3rd Ed. (P. D. Boyer, ed.), Academic Press, New York, pp. 651–659.Google Scholar
  179. Peck, H. D., and Le Gall, J., 1982. Biochemistry of dissimilatory sulphate reduction, Philos. Trans. R. Soc. London, Ser. B 298:443–466.Google Scholar
  180. Peck, H. D., Deacon, T. E., and Davidson, J. T., 1965. Studies on adenosine 5′-phospho-sulfate reductase from Desulfovibrio desulfuricans and Thiobacillus thioparus, Biochim. Biophys. Acta 96:429–446.PubMedGoogle Scholar
  181. Petushkova, Yu. P., and Ivanovskii, R. N., 1976a. Sulfite oxidation by Thiocapsa roseo-persicina, Mikrobiologiya 45:592–597.Google Scholar
  182. Petushkova, Yu. P., and Ivanovskii, R. N., 1976b. Enzymes involved in thiosulfate metabolism in Thiocapsa roseopersicina during various growth conditions, Mikrobiologiya 45:960–965.Google Scholar
  183. Pfennig, N., 1978. General physiology and ecology of photosynthetic bacteria, in The Photosynthetic Bacteria (R. K. Clayton and W. R. Sistrom, eds.), Plenum, New York/London, pp. 3–18.Google Scholar
  184. Pfennig, N., and Biebl, H., 1976. De sulfuromonas acetoxidans gen. nov. and sp. nov., a new anaerobic, sulfur-reducing, acetate-oxidizing bacterium, Arch. Microbiol. 110:3–12.PubMedGoogle Scholar
  185. Pfennig, N., and Widdel, F., 1982. The bacteria of the sulfur cycle, Philos. Trans. R. Soc. London, Ser. B 298:433–441.Google Scholar
  186. Pieniazek, N.J., Stepien, P. P., and Paszweski, A., 1973. Aspergillus nidulans mutant lacking cystathionine ß-synthase. Identity of L-serine sulfhydrylase with cystathionine ß-synthase and its distinctness from O-acetyl-L-serine sulfhydrylase, Biochim. Biophys. Acta 291:37–47.Google Scholar
  187. Postgate, J. R., 1959. Sulfate reduction by bacteria, Annu. Rev. Microbiol. 13:505–520.Google Scholar
  188. Postgate, J. R., 1960. The economic activities of sulphate-reducing bacteria, Prog. Ind. Microbiol. 2:48–69.Google Scholar
  189. Postgate, J. R., 1965. Recent advances in the study of the sulfate-reducing bacteria, Bac-teriol. Rev. 29:425–441.Google Scholar
  190. Postgate, J. R., 1984. The Sulphate-Reducing Bacteria, 2nd Ed., Cambridge University Press, Cambridge, 224 pp.Google Scholar
  191. Postgate, J. R., and Hunter, J. R., 1962. The survival of starved bacteria, J. Gen. Microbiol. 29:233–263; errata, J. Gen. Microbiol. (1964) 34:473.PubMedGoogle Scholar
  192. Ragland, J. B., 1959. The role of ATP-sulfurylase in the biosynthesis of cysteine and methionine by Neurospora, Arch. Biochem. Biophys. 84:541–542.PubMedGoogle Scholar
  193. Ralph, B. J., 1979. Oxidative reactions in the sulfur cycle, in Biogeochemical Cycling of Mineral-Forming Elements (P. A. Trudinger and D. J. Swaine, eds.), Elsevier, Amsterdam, pp. 369–400.Google Scholar
  194. Rees, C. E., 1973. Steady-state model for sulfur isotope fractionation in bacterial reduction processes, Geochim. Cosmochim. Acta 37:1141–1162.Google Scholar
  195. Robbins, P. W., and Lipmann, F., 1958a. Separation of the two enzymatic phases in active sulfate synthesis, J. Biol. Chem. 233:681–685.PubMedGoogle Scholar
  196. Robbins, P. W., and Lipmann, F., 1958b. Enzymatic synthesis of adenosine-5′-phospho-sulfate, J. Biol. Chem. 233:686–690.PubMedGoogle Scholar
  197. Roberts, K. R., and Marzluf, G. A., 1971. Specific interaction of chromate with dual sulfate permease systems of Neurospora crassa, Arch. Biochem. Biophys. 152:651.Google Scholar
  198. de Robichon-Szulmajster, H., and Surdin-Kerjan, Y., 1971. Nucleic acid and protein synthesis in yeasts. Regulation of synthesis and activity, in The Yeasts, Vol. 2 (A. H. Rose and J. S. Harrison, eds.), Academic Press, New York, pp. 335–418.Google Scholar
  199. Ron, E. Z., and Shain, M., 1971. Growth rate of Escherichia coli at elevated temperatures. Reversible inhibition of homoserine trans-succinylase, J. Bacteriol. 107:397–400.Google Scholar
  200. Ross, A. J., Schoenhoff, R. L., and Aleem, M. I. H., 1968. Electron transport and coupled phosphorylation in the chemoautotroph Thiobacillus neapolitanus, Biochem. Biophys. Res. Commun. 32:301–306.PubMedGoogle Scholar
  201. Roth, C. W., Hemfling, W. P., Conners, J. N., and Vishniac, W., 1973. Thiosulfate-and sulfide-dependent pyridine nucleotide reduction and gluconeogenesis in intact Thiobacillus neapolitanus, J. Bacteriol. 114:592-599. Rowbury, R. J., 1964. The accumulation of O-succinylhomoserine by Escherichia coli and Salmonella typhimurium, J. Gen. Microbiol. 37:171–180.Google Scholar
  202. Roy, A. B., 1960. The synthesis and hydrolysis of sulfate esters, Adv. Enzymol. 22:205–235.Google Scholar
  203. Roy, A. B., and Trudinger, P. A., 1970. The Biochemistry of Inorganic Compounds of Sulphur, Cambridge University Press, Cambridge, 400 pp.Google Scholar
  204. Rüdiger, H., and Jaenicke, L., 1973. Biosynthesis of methionine, Mol. Cell. Biochem. 1:157–168.PubMedGoogle Scholar
  205. Saito, E., and Tamura, G., 1971. Studies on sulfite reducing system of algae. 2. Purification and properties of reduced methyl viologen-linked sulfite reductase from a red algae, Porphyra yezoensis, Agric. Biol. Chem. 35:491–500.Google Scholar
  206. Sakata, T., Hiroishi, S., and Kadota, H., 1972. Occurrence of two types of cystathionine ß-cleavage enzyme in Bacillus subtilis, Agric. Biol. Chem. 36:333–335.Google Scholar
  207. Salem, A. R., and Foster, M. A., 1971. Role for folic acid conjugase in the regulation of methionine synthesis by Coprinus lagopus, Biochim. Biophys. Acta 252:597–600.PubMedGoogle Scholar
  208. Salem, A. R., and Foster, M. A., 1972. Microbial biosynthesis of methionine, Biochem. J. 127:845–853.PubMedGoogle Scholar
  209. Salem, A. R., Pattison, J. R., and Foster, M. A., 1972. Folic acid and the methylation of homocysteine by Bacillus subtilis, Biochem. J. 126:993–1004.PubMedGoogle Scholar
  210. Saslawsky, A. S., and Chait, S. S., 1929. The influence of the concentration of sodium chloride on several biochemical processes in the liman. Zentralbl. Bakteriol. Parasi-tenkde. (abt. 2) 77:18–21.Google Scholar
  211. Savin, M. A., and Flavin, M., 1972. Cystathionine synthesis in yeast. Alternative pathway for homocysteine biosynthesis, J. Bacteriol. 112:299–303.PubMedGoogle Scholar
  212. Saxena, J., and Aleem, M. I. H., 1973. Oxidation of sulfur compounds and coupled phosphorylation in the chemoautotroph Thiobacillus neopolitanus, Can. J. Biochem. 51:560–568.PubMedGoogle Scholar
  213. Schaeffer, W. I., and Umbreit, W. W., 1963. Phosphotidylinositol as a wetting agent in sulfur oxidation by Thiobacillus thiooxidans, J. Bacteriol. 85:492–496.PubMedGoogle Scholar
  214. Schedel, M., and Triiper, H. G., 1979. Purification of Thiobacillus denitrificans siroheme sulfite reductase and investigation of some molecular and catalytic properties, Biochim. Biophys. Acta 568:454–466.PubMedGoogle Scholar
  215. Schedel, M., and Trüper, H. G., 1980. Anaerobic oxidation of thiosulfate and elemental sulfur in Thiobacillus denitrificans, Arch. Microbiol. 124:205–210.Google Scholar
  216. Schedel, M., Vanselow, M., and Triiper, H. G., 1979. Siroheme sulfite reductase isolated from Chromatium vinosum. Purification and investigation of some of its molecular and catalytic properties, Arch. Microbiol. 121:29–36.Google Scholar
  217. Schiff, J. A., and Hodson, R. C., 1973. Metabolism of sulfate, Annu. Rev. Plant Physiol. 24:381–414.Google Scholar
  218. Schlegel, H. G., 1976. Allgemeine Mikrobiologie, 4th Ed., Thieme-Verlag, Stuttgart.Google Scholar
  219. Schlegel, H. G., 1981. Microorganisms involved in the nitrogen and sulfur cycles, in Biology of Inorganic Nitrogen and Sulfur (H. Bothe and A. Trebst, eds.), Springer-Verlag, Berlin, pp. 3–12.Google Scholar
  220. Schmidt, A., 1972a. Mechanism of photosynthetic sulfate reduction. APS-sulfotransferase from Chlorella, Arch. Microbiol. 84:77–86.Google Scholar
  221. Schmidt, A., 1972b. Enzyme reactions involved in photosynthetic sulfate reduction in cell-free systems of spinach chloroplasts and Chlorella, Z. Naturforsch. 27B:183–192.Google Scholar
  222. Schmidt, A., 1973. Sulfate reduction in a cell-free system of Chlorella—ferredoxin dependent reduction of a protein-bound intermediate by a thiosulfonate reductase, Arch. Mikrobiol. 93:29–52.PubMedGoogle Scholar
  223. Schmidt, A., 1975a. Distribution of APS-sulfotransferase activity among higher plants, Plant Sci. Lett. 5:407–415.Google Scholar
  224. Schmidt, A., 1975b. Inhibition of adenosine-5′-phosphate-sulfotransferase activity from spinach, maize, and Chlorella by adenosines-monophosphate, Planta 127:93–95.Google Scholar
  225. Schmidt, A., 1975c. Sulfotransferase from spinach leaves using adenosine-5′-phosphosul-fate, Planta 124:267–275.Google Scholar
  226. Schmidt, A., 1976. Adenosine-5′-phosphosulfate sulfotransferase from spinach (Spinacea oleracea L.)—stabilization, partial-purification and properties, Planta 130:257–263.Google Scholar
  227. Schmidt, A., 1977a. Assimilatory sulfate reduction via 3′-phosphoadenosine-5′-phosphosulfate (PAPS) and adenosine-5′-phosphosulfate (APS) in blue-green algae, FEMS Microbiol. Lett. 1:137–140.Google Scholar
  228. Schmidt, A., 1977b. Protein-catalyzed isotopic exchange reaction between cysteine and sulfide in spinach leaves, Z. Naturforsch. 32C:219–225.Google Scholar
  229. Schmidt, A., 1977c. Adenosine-5′-phosphosulfate (APS) as sulfate donor in Rhodospirillum rubrum, Arch. Microbiol. 112:263–270.PubMedGoogle Scholar
  230. Schmidt, A., and Christen, U., 1978. Factor-dependent sulfotransferase specific for 3′-phosphoadenosine-5′-phosphosulfate (PAPS) in Cyanobacterium synechococcus-6301, Planta 140:239–244.Google Scholar
  231. Schmidt, G. L., and Kamen, M. D., 1970. Variable cellular composition of Chromatium in growing cultures, Arch. Mikrobiol. 73:1–18.PubMedGoogle Scholar
  232. Schmidt, A., and Schwenn, J. D., 1972. Mechanism of photosynthetic sulfate reduction, in Proc. 2nd Int. Cong. Photosynthesis, The Hague, G. Forti, M. Avron, and A. Melandri, eds.), Dr. W. Junk NV Publishers, The Hague, pp. 507–514.Google Scholar
  233. Schmidt, A., and Triiper, H. G., 1977. Reduction of adenylysulfate and 3′-phosphoadenylyl-sulfate in phototropic bacteria, Experientia 33:1008–1010.PubMedGoogle Scholar
  234. Schmidt, A., Abrams, W. R., and Schiff, J. A., 1974. Reduction of adenosine-5′-phosphosulfate to cysteine in extracts from Chlorella and mutants blocked for sulfate reductions, Eur. J. Biochem. 47:423–434.PubMedGoogle Scholar
  235. Schmidt, G. L., Nicolson, G. L., and Kamen, M. D., 1971. Composition of the sulfur particle of Chromatium vinosum strain D, J. Bacteriol. 105:1137–1141.PubMedGoogle Scholar
  236. Schwenn, J. D., and Urlaub, H., 1981. Recent results on the assimilatory sulfate reduction: APS-kinase and the reduction of APS to cysteine in higher plants, in Biology of Inorganic Nitrogen and Sulfur (H. Bothe and A. Trebst, eds.), Springer-Verlag, Berlin, pp. 334–340.Google Scholar
  237. Scott, J. M., and Spencer, B., 1965. Sulphate transport in Aspergillus nidulans, Biochem. J. 96:78 P.Google Scholar
  238. Seki, Y., Kobayashi, K., and Ishimoto, M., 1979. Biochemical studies on sulfate-reducing bacteria. XV. Separation and comparison of two forms of desulfoviridin, J. Biochem. (Tokyo) 85:705–711.Google Scholar
  239. Selhub, J., Burton, E., and Sakami, W., 1969. Identification of three enzymes specifically involved in the de novo methionine methyl biosynthesis of N. crassa, Fed. Proc. 28:352.Google Scholar
  240. Selhub, J., Savin, M. A., Sakami, W., and Flavin, M., 1971. Synchronization of converging metabolic pathways: Activation of the cystathionine γ-synthase of Neurospora crassa by methyltetrahydrofolate, Proc. Natl. Acad. Sci. USA 68:312–314.PubMedGoogle Scholar
  241. Sentenac, A., and Fromageot, P., 1964. La sérinehydrolyase de l’oiseau mise. En évidence dans l’embryon et mécanisme d’action, Biochim. Biophys. Acta 81:289–300.Google Scholar
  242. Siegel, L. M., 1975. Biochemistry of the sulfur cycle, in Metabolic Pathways, Vol. VII, Metabolism of Sulfur Compounds, 3rd Ed. (D. M. Greenberg, ed.), Academic Press, New York, pp. 217–286.Google Scholar
  243. Siegel, L. M., 1978. Structure and function of siroheme and siroheme enzymes, in Mechanisms of Oxidizing Enzymes (T. P. Singer and R. N. Ondarza, eds.), Elsevier, New York, pp. 201–214.Google Scholar
  244. Siegel, L. M., and Davis, P. S., 1974. Reduced nicotinamide adenine dinucleotide phosphate-sulphite reductase of enterobacteria. 4. Escherichia coli hemoflavoprotein. Subunit structure and dissociation into hemoprotein and flavoprotein components, J. Biol. Chem. 249:1587–1598.PubMedGoogle Scholar
  245. Siegel, L. M., and Monty, K. J., 1964. Kinetic properties of the TPNH-specific sulfite and hydroxy lamine reductase of Salmonella typhimurium, Biochem. Biophys. Res. Commun. 17:201–205.PubMedGoogle Scholar
  246. Siegel, L. M., Kamin, H., Rueger, D. C., Presswood, R. P., and Gibson, Q. H., 1971. Iron-free sulfite reductase flavoprotein from mutants of Salmonella typhimurium, in Flavins and Flavoproteins, Proceedings of Int. Symp., 3rd (H. Kamin, ed.), University Park Press, Baltimore, Maryland, pp. 523–554.Google Scholar
  247. Siegel, L. M., Murphy, M. J., and Kamin, H., 1974. Reduced nicotinamide adenine dinucleotide phosphate-sulfite reductase of enterobacteria, J. Biol. Chem. 249:1610–1614.PubMedGoogle Scholar
  248. Sieker, L. C., Adman, E., and Jensen, L. H., 1971. Structure of the FeS complex in a bacterial ferredoxin, Nature 235:40–42.Google Scholar
  249. Silver, M., and Lundgren, D. G., 1968. Sulfur-oxidizing enzyme of Ferrobacillus ferroox-idans (Thiobacillus ferrooxidans), Can. J. Biochem. 46:457–561.PubMedGoogle Scholar
  250. Skyring, G. W., and Trudinger, P. A., 1972. A method for the electrophoretic characterization of sulfite reductases in crude preparations from sulfate-reducing bacteria using polyacrylamide gels, Can. J. Biochem. 50:1145–1148.PubMedGoogle Scholar
  251. Skyring, G. W., and Trudinger, P. A., 1973. A comparison of the electrophoretic properties of the ATP-sulfurylases, APS-reductases, and sulfite reductases from cultures of dissimilatory sulfate-reducing bacteria, Can. J. Microbiol. 19:375–380.PubMedGoogle Scholar
  252. Smith, D. A., 1971. S-Amino acid metabolism and its regulation in Escherichia coli and Salmonella typhimurium, Adv. Genet. 16:141–165.PubMedGoogle Scholar
  253. Spencer, B., Hussey, E. C., Orsi, B. A., and Scott, J. M., 1968. Mechanism of choline O-sulphate utilization in fungi, Biochem. J. 106:461–469.PubMedGoogle Scholar
  254. Starkey, R. L., 1960/61. Sulfate-reducing bacteria—physiology and practical significance, in Lectures on Theoretical and Applied Aspects of Modern Microbiology, University of Maryland Press, University Park, Maryland.Google Scholar
  255. Starkey, R. L., and Wight, K. M., 1945. Anaerobic Corrosion of Iron in Soil, American Gas. Assn., New York.Google Scholar
  256. Suzuki, I., and Silver, M., 1966. The initial product and properties of the sulfur-oxidizing enzyme of Thiobacilli, Biochim. Biophys. Acta 122:22–33.PubMedGoogle Scholar
  257. Tabor, H., and Tabor, C. W., 1972. Biosynthesis and metabolism of 1,4-diaminobutane, spermidine, spermine, and related amines, Adv. Enzymol. 36:203–268.PubMedGoogle Scholar
  258. Tamura, G., 1965. Studies on sulfite reducing system of higher plants. 2. Purification and properties of sulfite reductase from Allium odorum, J. Biochem. (Tokyo) 57:207–214.Google Scholar
  259. Taylor, B. F., 1968. Oxidation of elemental sulfur by an enzyme system from Thiobacillus neapolitanus, Biochim. Biophys. Acta 170:112–122.PubMedGoogle Scholar
  260. Taylor, R. T., and Weissbach, H., 1973. N5-Methyltetrahydrofolate-homocysteine methyltransferases, in The Enzymes, Vol. 9, 3rd Ed. (P. D. Boyer, ed.), Academic Press, New York, pp. 121–165.Google Scholar
  261. Teas, H. J., Horowitz, N. H., and Fling, M., 1948. Homoserine as a precursor of threonine and methionine in Neurospora, J. Biol. Chem. 172:651–658.PubMedGoogle Scholar
  262. Temple, K. L., 1964. Syngenesis of sulfide ores: An evaluation of biochemical aspects, Econ. Geol. 59:1473–1491.Google Scholar
  263. Thauer, R. K., Jungermann, K., and Decker, K., 1977. Energy conservation in chemotrophic anaerobic bacteria, Bacteriol. Rev. 41:100–180.PubMedGoogle Scholar
  264. Thenen, S. W., and Stokstad, E. L. R., 1973. Effect of methionine on specific folate coenzyme pools in vitamin B12 deficient and supplemented rats, J. Nutr. 103:363–370.PubMedGoogle Scholar
  265. Tokuno, S., Strauss, B., and Tsuda, Y., 1962. Gene interactions affecting methionine biosynthesis and the response to S-methylcysteine by mutants of Neurospora crassa, J. Gen. Microbiol. 28:481–491.PubMedGoogle Scholar
  266. Torii, K., and Bandurski, R. S., 1964. A possible intermediate in reduction of 3′-phosphoryl-5′-adenosinephosphosulfate to sulfite, Biochem. Biophys. Res. Commun. 14:537–542.PubMedGoogle Scholar
  267. Torii, K., and Bandurski, R. S., 1967. Yeast sulfate-reducing system. 3. An intermediate in reduction of 3′-phosphoryl-5′-adenosinephosphosulfate to sulfite, Biochim. Biophys. Acta 136:286–295.PubMedGoogle Scholar
  268. Torma, A. E., 1977. The role of Thiobacillus ferrooxidans in hydrometallurgical processes, Adv. Biochem. Eng. 6:1–37.Google Scholar
  269. Trudinger, P. A., 1967. Metabolism of inorganic sulfur compounds by thiobacilli, Rev. Pure Appl. Chem. 17:1–24.Google Scholar
  270. Trudinger, P. A., 1969. Assimilatory and dissimilatory metabolism of inorganic sulphur compounds by micro-organisms, Adv. Microb. Physiol. 3:111–158.Google Scholar
  271. Trudinger, P. A., 1971. Microbes, metals, and minerals, Miner. Sci. Eng. 3:13–25.Google Scholar
  272. Trudinger, P. A., 1976. Microbiological processes in relation to ore genesis, in Handbook of Stratabound and Stratiform Ore Deposits (K. H. Wolf, ed.), Elsevier, Amsterdam, pp. 135–190.Google Scholar
  273. Trudinger, P. A., and Loughlin, R. E., 1981. Metabolism of simple sulfur compounds, in Comprehensive Biochemistry, Vol. 19A (M. Florkin and E. H. Stotz, eds.), Elsevier, Amsterdam, pp. 165–256.Google Scholar
  274. Trudinger, P. A., Lambert, I. B., and Skyring, C. W., 1972. Biogenic sulfide ores: A feasibility study, Econ. Geol. 67:1114–1127.Google Scholar
  275. Trudinger, P. A., Swaine, D. J., and Skyring, G. W., 1982. Biogeochemical cycling of elements—general considerations, in Biogeochemical Cycling of Mineral-Forming Elements (P. A. Trudinger and D. J. Swaine, eds.), Elsevier, Amsterdam, pp. 1–27.Google Scholar
  276. Trüper, H. G., 1981. Photolithotrophic sulfur oxidation, in Biology of Inorganic Nitrogen and Sulfur (Conf.) (H. Bothe and A. Trebst, eds.), Springer, Berlin, pp. 199–211.Google Scholar
  277. Trüper, H. G., 1982. Microbial processes in the sulfur cycle through time, in Mineral Deposits and the Evolution of the Biosphere (H. D. Holland and M. Schidlowski, eds.), Springer, Berlin, pp. 5–30.Google Scholar
  278. Trüper, H. G., 1984a. Microorganisms and the sulfur cycle, in Sulfur, Its Significance for Chemistry, for the Geo-, Bio-, and Cosmosphere and Technology (A. Müller and B. Krebs, eds.), Studies in Inorganic Chemistry 5:351–365.Google Scholar
  279. Trüper, H. G., 1984b. Prototrophic bacteria and their sulfur metabolism, in Sulfur, Its Significance for Chemistry, for the Geo-, Bio-, and Cosmosphere and Technology (A. Müller and B. Krebs, eds.), Studies in Inorganic Chemistry 5:367–382.Google Scholar
  280. Trüper, H. G., and Fischer, U., 1982. Anaerobic oxidation of sulfur compounds as electron donors for bacterial photosynthesis, Philos. Trans. R. Soc. London, Ser. B 298:529–542.Google Scholar
  281. Trüper, H. G., and Hathaway, J. C., 1967. Orthorhombic sulphur formed by photosynthetic sulphur bacteria, Nature 215:435–436.PubMedGoogle Scholar
  282. Tsang, M. L.-S., and Schiff, J. A., 1975a. Studies of sulfate utilization by algae. 14. Distribution of adenosine-3′-phosphate-5′-phosphosulfate (PAPS) and adenosine-5′-phos-phosulfate (APS) sulfotransferases in assimilatory sulfate reducers, Plant Sci. Lett. 4:301–307.Google Scholar
  283. Tsang, M. L.-S., and Schiff, J. A., 1975b. Two patterns of assimilatory sulfate reduction in photosynthetic and non-photosynthetic organisms, Plant Physiol. 56:S36.Google Scholar
  284. Tsang, M. L.-S., and Schiff, J. A., 1975c. Sulfate-reducing pathway in Escherichia coli involving bound intermediates, J. Bacteriol. 125:923–933.Google Scholar
  285. Tsang, M. L.-S., and Schiff, J. A., 1976a. Studies of sulfate utilization by algae. 17. Reactions of adenosine-5′-phosphate (APS) sulfotransferase from Chlorella and studies of model reactions which explain diversity of side products with thiols, Plant Cell Physiol. 17:1209–1220.Google Scholar
  286. Tsang, M. L.-S., and Schiff, J. A., 1976b. Properties of enzyme fraction A from Chlorella and copurification of 3′(2′),5′-bisphosphonucleoside 3′(2′)-phosphohydrolase, adenosine 5′-phosphosulfate sulfohydrolase and adenosine-5′-phosphosulfate cyclase activities, Eur. J. Biochem. 65:113–121.Google Scholar
  287. Tsang, M. L.-S., and Schiff, J. A., 1978. Studies of sulfate utilization by algae 18. Identification of glutathione as a physiological carrier in assimilatory sulfate reduction by Chlorella, Plant. Sci. Lett. 11:177–183.Google Scholar
  288. Tweedie, J. W., and Segel, I. H., 1970. Specificity of transport processes for sulfur, selenium and molybdenum anions by filamentous fungi, Biochim. Biophys. Acta 196:95–106.PubMedGoogle Scholar
  289. Tweedie, J. W., and Segel, I. H., 1971a. Adenosine triphosphate sulfurylase from Pénicillium chrysogenum. 2. Physical, kinetic, and regulatory properties, J. Biol. Chem. 246:2438–2446.PubMedGoogle Scholar
  290. Tweedie, J. W., and Segel, I. H., 1971b. ATP-sulfurylase from Pénicillium chrysogenum. 1. Purification and characterization, Prep. Biochem. 1:91–117.PubMedGoogle Scholar
  291. Vallée, M., 1969. Sulfate transport system of Chlorella pyrenoidosa and its regulation. 4. Studies with chromate, Biochim. Biophys. Acta 173:486–500.PubMedGoogle Scholar
  292. Waldschmidt, M., 1962. Vergleich des Einbaues von 35S-Sulfid und 35S-Sulfat in das Kör-pereiweiss von Ratten, Biochem. Z. 335:400–407.PubMedGoogle Scholar
  293. Ware, D. A., and Postgate, J. R., 1971. Physiological and chemical properties of a reductant-activated inorganic pyrophosphatase from Desulfovibrio de sulfuric ans, J. Gen. Microbiol. 67:145–160.PubMedGoogle Scholar
  294. Weissbach, H., and Taylor, R. T., 1970. Roles of vitamin B12 and folic acid in methionine synthesis, Vitam. Horm. 28:415–440.PubMedGoogle Scholar
  295. Wheldrake, J. F., and Pasternak, C. A., 1965. Control of sulphate activation in bacteria, Biochem. J. 96:276–280.PubMedGoogle Scholar
  296. Whitfield, C. D., Steers, E. J., Jr., and Weissbach, H., 1970. Purification and properties of 5-methyltetrahydropteroyltriglutamate-homocysteine transmethylase, J. Biol. Chem. 245:390–401.PubMedGoogle Scholar
  297. Wilson, L. G., and Bandurski, R. S., 1958. Enzymatic reactions involving sulfate, sulfite, selenate, and molybdate, J. Biol. Chem. 233:975–981.PubMedGoogle Scholar
  298. Wilson, L. G., Asahi, T., and Bandurski, R. S., 1961. Yeast sulfate-reducing system. 1. Reduction of sulfate to sulfite, J. Biol. Chem. 236:1822–1829.PubMedGoogle Scholar
  299. Wolfe, R. S., and Pfennig, N., 1977. Reduction of sulfur by Spirillum 5175 and syntrophism with Chlorobium, Appl. Environ. Microbiol. 33:427–433.PubMedGoogle Scholar
  300. Xavier, A. V., Moura, J. J. G., Le Gall, J., and DerVartanian, D. V., 1979. Oxidation reduction potentials of the hemes in cytochrome c3 from D. gigas in the presence and absence of ferredoxin by EPR spectroscopy, Biochimie 61:689–695.PubMedGoogle Scholar
  301. Yagi, T., Honya, M., and Tamiya, N., 1968. Purification and properties of hydrogenases of different origins, Biochim. Biophys. Acta 153:699–705.PubMedGoogle Scholar
  302. Yagi, T., Inokuchi, H., and Kimura, K., 1983. Cytochrome c3, a tetrahemoprotein electron carrier found in sulfate-reducing bacteria, Acc. Chem. Res. 16:2–7.Google Scholar
  303. Yoshimoto, A., and Sato, R., 1968a. Studies on yeast sulfite reductase. 1. Purification and characterization, Biochim. Biophys. Acta 153:555–575.PubMedGoogle Scholar
  304. Yoshimoto, A., and Sato, R., 1968b. Studies on yeast sulfite reductase. 2. Partial purification and properties of genetically incomplete sulfite reductases, Biochim. Biophys. Acta 153:576–588.PubMedGoogle Scholar
  305. Yoshimoto, A., Nakamura, T., and Sata, R., 1961. Sulfite reductase from Aspergillis nidulans, J. Biochem. (Tokyo) 50:553–554.Google Scholar
  306. Zubieta, J. A., Mason, R., and Postgate, J. R., 1973. A four-iron ferredoxin from Desulfovibrio de sulfuric ans, Biochem. J. 133:851–854.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • Ryan J. Huxtable
    • 1
  1. 1.University of Arizona Health Sciences CenterTucsonUSA

Personalised recommendations