Plant Nickel Metabolism

  • Robert P. Hausinger
Part of the Biochemistry of the Elements book series (BOTE, volume 12)

Abstract

Interactions between nickel ions and plants are diverse and agriculturally significant (Mishra and Kar, 1974). At low metal ion concentrations, nickel is an essential nutrient for many plants and enhances several physiological functions. In contrast, excess levels of nickel can lead to growth inhibition, necrosis, or even plant death. Some plants classified as hyperaccumulators, however, can tolerate and may even prefer elevated levels of nickel (i.e., over 1000 µg of nickel per gram dry weight of tissue).

Keywords

Nickel Complex Nickel Concentration Jack Bean Urease Xylem Exudate Xylem Fluid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baker, A. J. M., and Brooks, R. R., 1989. Terrestrial higher plants which hyperaccumulate metallic elements—a review of their distribution, ecology and phytochemistry, Biorecovery 1:81–126.Google Scholar
  2. Baker, A. J. M., and Walker, P. L., 1990. Ecophysiology of metal uptake by tolerant plants, in Heavy Metal Tolerance in Plants: Evolutionary Aspects ( A. J. Shaw, ed.), CRC Press, BocaGoogle Scholar
  3. Raton, Florida, pp. 155–177.Google Scholar
  4. Benchemsi-Bekkari, N., and Pizelle, G., 1992. In vivo urease activity in Robinia pseudoacacia, Plant Physiol. 30: 187–192.Google Scholar
  5. Brooks, R. R., 1987. The distribution and phytochemistry of plants which hyperaccumulate nickel, Serpentine and Its Vegetation: A Multidisciplinary Approach, Croom Helm, London, pp. 85–108.Google Scholar
  6. Brooks, R. R., Lee, J., Reeves, R. D., and Jaffré, T., 1977. Detection of nickeliferous rocks byGoogle Scholar
  7. analysis of herbarium specimens of indicator plants, J. Geochem. Explor. 7:49–77.Google Scholar
  8. Brooks, R. R., Shaw, S., and Marfil, A. A., 1981. The chemical form and physiological functionGoogle Scholar
  9. of nickel in some Iberian Alyssum species, Physiol. Plant. 51:167–170.Google Scholar
  10. Brown, P. H., Welch, R. M., and Cary, E. E., 1987a. Nickel: A micronutrient essential for higher plants, Plant Physiol. 85: 801–803.PubMedCrossRefGoogle Scholar
  11. Brown, P. H., Welch, R. M., Cary, E. E., and Checkai, R. T., 1987b. Beneficial effects of nickel on plant growth, J. Plant Nutr. 10: 2125–2135.CrossRefGoogle Scholar
  12. Brown, P. H., Welch, R. M., and Madison, J. T., 1990. Effect of nickel deficiency on soluble anion, amino acid, and nitrogen levels in barley, Plant Soil 125: 19–27.CrossRefGoogle Scholar
  13. Cataldo, D. A., Garland, T. R., and Wildung, R. E., 1978a. Nickel in plants. I. Uptake kinetics using intact soybean seedlings, Plant Physiol. 62: 563–565.PubMedCrossRefGoogle Scholar
  14. Cataldo, D. A., Garland, T. R., Wildung, R. E., and Drucker, H., 1978b. Nickel in plants. II. Distribution and chemical form in soybean plants, Plant Physiol. 62: 566–570.PubMedCrossRefGoogle Scholar
  15. Dalton, D. A., Russell, S. A., and Evans, H. J., 1988. Nickel as a micronutrient element for plants, Biofactors 1: 11–16.PubMedGoogle Scholar
  16. de Miranda, J. R., Thomas, M. A., Thurman, D. A., and Thomsen, A. B., 1990. Metallothionein genes from the flowering plant Mimulus guttatus, FEBS Lett. 260: 277–280.PubMedCrossRefGoogle Scholar
  17. Dixon, N. E., Gazzola, C., Blakeley, R. L., and Zenner, B., 1975. Jack bean urease (EC 3.5.1.5). A metalloenzyme. A simple biological role for nickel?, J. Am. Chem. Soc. 97: 4131–4133.PubMedCrossRefGoogle Scholar
  18. Eskew, D. L., Welch, R. M., and Cary, E. E., 1983. Nickel: An essential micronutrient for legumes and possibly all higher plants, Science 222: 621–623.PubMedCrossRefGoogle Scholar
  19. Eskew, D. L., Welch, R. M., and Norvell, W. A., 1984. Nickel in higher plants. Further evidence for an essential role, Plant Physiol. 76: 691–693.PubMedCrossRefGoogle Scholar
  20. Grill, E., Winnacker, E.-L., and Zenk, M. H., 1987. Phytochelatins, a class of heavy-metal-binding peptides from plants, are functionally analogous to metallothioneins, Proc. Natl. Acad. Sci. USA 84: 439–443.PubMedCrossRefGoogle Scholar
  21. Grill, E., Lölfler, S., Winnacker, E.-L., and Zenk, M. H., 1989. Phytochelatins, the heavy-metal-binding peptides of plants, are synthesized from glutathione by a specific -y-glutamylcysteine dipeptidyl transpeptidase (phytochelatin synthase), Proc. Natl. Acad. Sci. USA 86: 68386842.Google Scholar
  22. Homer, F. A., Reeves, R. D., Brooks, R. R., and Baker, A. J. M., 1991. Characterization of the nickel-rich extract from the nickel hyperaccumulator Dichapetalum gelonioides, Phytochemistry 30: 2141–2145.CrossRefGoogle Scholar
  23. Horak, O., 1985a. Zur bedeutung des nickels fir Fabaceae. I. Vergleichende untersuchungenGoogle Scholar
  24. über den gehalt teile und samen an nickel und anderen elementen, Phyton 25:135–146. Horak, O., 1985b. Zur bedeutung des nickels für Fabaceae. II. Nickelaufnahme und nickelbedarfGoogle Scholar
  25. von Pisum sativum L., Phyton 25:310–307.Google Scholar
  26. Hutchinson, T. C., 1981. Nickel, in Effect of Heavy Metal Pollution on Plants (N. W. Lepp, ed.), Applied Science Publishers, London, pp. 171–211.Google Scholar
  27. Jaffré, T., Brooks, R. R., Lee, J., and Reeves, R. D., 1976. Sebertia acuminata: A hyperaccumulator of nickel from New Caledonia, Science 193: 579–580.Google Scholar
  28. Kersten, W. J., Brooks, R. R., Reeves, R. D., and Jaffré, T., 1980. Nature of nickel complexes inGoogle Scholar
  29. Psychotria douarrei and other nickel-accumulating plants, Phytochemistry 19:1963–1965.Google Scholar
  30. Krogmeier, M. J., McCarty, G. W., and Bremner, J. M., 1989a. Phytotoxicity of foliar-applied urea, Proc. Natl. Acad. Sci. USA 86: 8189–8191.PubMedCrossRefGoogle Scholar
  31. Krogmeier, M. J., McCarty, G. W., and Bremner, J. M., 1989b. Potential phytotoxicity associated with the use of soil urease inhibitors, Proc. Natl. Acad. Sci. USA 86: 1110–1112.PubMedCrossRefGoogle Scholar
  32. Lee, J., Reeves, R. D., Brooks, R. R., and Jaffré, T., 1977. Isolation and identification of a citratocomplex of nickel from nickel-accumulating plants, Phytochemistry 16: 1503–1505.CrossRefGoogle Scholar
  33. Lee, J., Reeves, R. D., Brooks, R. R., and Jaffré, T., 1978. The relationship between nickel and citric acid in some nickel-accumulating plants, Phytochemistry 17: 1033–1035.CrossRefGoogle Scholar
  34. Mishra, D., and Kar, M., 1974. Nickel in plant growth and metabolism, Bot. Rev. 40: 395–452.CrossRefGoogle Scholar
  35. Morgutti, S., Sacchi, G. A., and Cocucci, S. M., 1984. Effects of Ni’ on proton extrusion, dark CO2 fixation and malate synthesis in maize roots, Physiol. Plant. 60: 70–74.CrossRefGoogle Scholar
  36. Morrison, R. S., Brooks, R. R., and Reeves, R. D., 1980. Nickel uptake by Alyssum species, Plant Sci. Lett. 17: 451–457.CrossRefGoogle Scholar
  37. Neumann, P. M., and Charnel, A., 1986. Comparative phloem mobility of nickel in nonsenescent plants, Plant Physiol. 81: 689–691.PubMedCrossRefGoogle Scholar
  38. Pancaro, L., Pelosi, P., Gambi, O. V., and Galloppini, C., 1978. Further contribution on the relationship between nickel and malic and malonic acids in Alyssum, G. Bot. Ital. 112: 282–283.CrossRefGoogle Scholar
  39. Pandolfini, T., Gabbrielli, R., and Comparini, C., 1992. Nickel toxicity and peroxidase activity in seedlings of Triticum aestivum L., Plant Cell Environ. 15: 719–725.CrossRefGoogle Scholar
  40. Pelosi, P., Fiorentini, R., and Galoppini, C., 1976. On the nature of nickel compounds in Alyssum bertolonii Desv.-Il, Agric. Biol. Chem. 40: 1641–1642.CrossRefGoogle Scholar
  41. Rauser, W. E., 1990. Phytochelatins, Annu. Rev. Biochem. 59: 61–86.PubMedCrossRefGoogle Scholar
  42. Schlegel, H. G., Cosson, J.-P., and Baker, A. J. M., 1991. Nickel-hyperaccumulating plants provide a niche for nickel-resistant bacteria, Bot. Acta 104: 18–25.Google Scholar
  43. Severne, B. C., 1974. Nickel accumulation by Hybanthus floribundus, Nature (London) 248: 807808.Google Scholar
  44. Severne, B. C., and Brooks, R. R., 1972. A nickel-accumulating plant from Western Australia, Planta 103: 91–94.CrossRefGoogle Scholar
  45. Still, E. B., and Williams, R. J. P., 1980. Potential methods for selective accumulation of nickel(Il) by plants, J. Inorg. Biochem. 13: 35–40.CrossRefGoogle Scholar
  46. Swain, D. J., 1955. The trace element content of soils, Commonwealth Bureau of Soil Science, Technical Communication No. 48 HMSO, London.Google Scholar
  47. Theisen, M. O., and Blincoe, C., 1984. Biochemical form of nickel in alfalfa, J. Inorg. Biochem. 21: 137–146.CrossRefGoogle Scholar
  48. Theisen, M. O., and Blincoe, C., 1988. Isolation and partial characterization of nickel complexes in higher plants, Biol. Trace Elem. Res. 16: 239–251.PubMedCrossRefGoogle Scholar
  49. Tiffin, L. 0., 1971. Translocation of nickel in xylem exudate of plants, Plant Physiol. 48: 273277.Google Scholar
  50. Vanselow, A. P., 1966. Nickel, in Diagnostic Criteria for Plants and Soils ( H. D. Chapman, ed.), University of California Division of Agricultural Sciences, Davis, California, pp. 302–309.Google Scholar
  51. Verkleij, J. A. C., and Schat, H., 1990. Mechanisms of metal tolerance in higher plants, in Heavy Metal Tolerance in Plants: Evolutionary Aspects ( A. J. Shaw, ed.), CRC Press, Boca Raton, Florida, pp. 179–194.Google Scholar
  52. Walker, C. D., Graham, R. D., Madison, J. T., Cary, E. E., and Welch, R. M., 1985. Effects of Ni deficiency on some nitrogen metabolites in cowpeas (Vigna unguiculata L. Walp), Plant Physiol. 79: 474–479.PubMedCrossRefGoogle Scholar
  53. Welch, R. M., 1981. The biological significance of nickel, J. Plant Nutr. 3: 345–356.CrossRefGoogle Scholar
  54. Wiersma, D., and Van Goor, B. J., 1979. Chemical forms of nickel and cobalt in phloem of Ricinus communis, Physiol. Plant. 45: 440–442.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Robert P. Hausinger
    • 1
  1. 1.Departments of Microbiology and BiochemistryMichigan State UniversityEast LansingUSA

Personalised recommendations