Microbial Nickel Metabolism

  • Robert P. Hausinger
Part of the Biochemistry of the Elements book series (BOTE, volume 12)

Abstract

As described in Chapters 3–6, four nickel-dependent enzymes have been isolated and characterized from various microorganisms—urease, hydrogenase, CO dehydrogenase, and methyl coenzyme M reductase. In addition, specific accessory proteins have been identified as being involved in the functional incorporation of nickel ion into urease and hydrogenase. Intracellular nickel processing functions may also be needed for nickel metallocenter assembly in CO dehydrogenase and for the synthesis of the nickel-containing coenzyme F430, a component of methyl coenzyme M reductase. These aspects of microbial nickel metabolism will not be repeated here. Rather, this chapter will focus on nickel ion transport into the microbial cell, nickel ion toxicity and resistance mechanisms in microbes, and other features related to microbial nickel metabolism.

Keywords

Neurospora Crassa Hydrogenase Activity Clostridium Pasteurianum Nickel Resistance Eucaryotic Microbe 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abelson, P. H., and Aldous, E., 1950. Ion antagonisms in microorganisms: Interference of normal magnesium metabolism by nickel, cobalt, cadmium, zinc, and manganese, J. Bacteriol. 60: 401–413.PubMedGoogle Scholar
  2. Adiga, P. R., Sastry, K. S., Venkatasubramanyam, V., and Sarma, P. S., 1961. Interrelationships in trace-element metabolism in Aspergillus niger, Biochem. J. 81: 545–550.PubMedGoogle Scholar
  3. Andronikashvili, E. L., Bregadze, V. G., and Monaselidze, J. R., 1988. Interactions between nickel and DNA: Considerations about the role of nickel in carcinogenesis, in Nickel and Its Role in Biology (H. Sigel and A. Sigel, eds.), Metal Ions in Biological Systems, Vol. 23, Marcel Dekker, New York, pp. 331–367.Google Scholar
  4. Babich, H., and Stotzky, G., 1983. Toxicity of nickel to microbes: Environmental aspects, Adv. Appl. Microbiol. 29: 195–265.CrossRefPubMedGoogle Scholar
  5. Bartha, R., and Ordal, E. J., 1965. Nickel-dependent chemolithotrophic growth of two Hydrogenomonas strains, J Bacteriol. 89: 1015–1019.PubMedGoogle Scholar
  6. Baudet, C., Sprott, G. D., and Patel, G. B., 1988. Adsorption and uptake of nickel in Methanothrix concilii, Arch. Microbiol. 150: 338–342.CrossRefGoogle Scholar
  7. Bertrand, D., and de Wolf, A., 1967. Le nickel, oligoélément dynamique pour les végétaux supérieurs, C. R. Acad. Sci. 265: 1053–1055.Google Scholar
  8. Biggart, N. W., and Costa, M., 1986. Assessment of the uptake and mutagenicity of nickel chloride in Salmonella tester strains, Mutat. Res. 175: 209–215.CrossRefPubMedGoogle Scholar
  9. Bryson, M. F., and Drake, H. L., 1988. Energy-dependent transport of nickel by Clostridium pasteurianum, J. Bacteriol. 170: 234–238.PubMedGoogle Scholar
  10. Butzow, J. J., and Eichhorn, G. L., 1965. Interactions of metal ions with polynucleotides and related compounds. IV. Degradation of polyribonucleotides by zinc and other divalent metal ions, Biopolymers 3: 95–107.CrossRefPubMedGoogle Scholar
  11. Campbell, P. M., and Smith, G. D., 1986. Transport and accumulation of nickel ions in the cyanobacterium Anabaena cylindrica, Arch. Biochem. Biophys. 244: 470–477.CrossRefPubMedGoogle Scholar
  12. Daday, A., Mackerras, A.,H., and Smith, G. D., 1988. A role for nickel in cyanobacterial nitrogen fixation and growth via cyanophycin metabolism, J. Gen. Microbiol. 134: 2659–2663.Google Scholar
  13. Eberz, G., Eitinger, T., and Friedrich, B., 1989. Genetic determinants of a nickel-specific transport system are part of a plasmid-encoded hydrogenase gene cluster in Alcaligenes eutrophus, J. Bacteriol. 171:1340–1345.Google Scholar
  14. Eitinger, T., and Friedrich, B., 1991. Cloning, nucleotide sequence, and heterologous expression of a high-affinity nickel transport gene from Alcaligenes eutrophus, J. Biol. Chem. 166: 32223227.Google Scholar
  15. Folsom, B. R., Popescu, A., Kingsley-Hickman, P. W., and Wood, J. M., 1986. A comparative study of nickel and aluminum transport and toxicity in freshwater green algae, in Frontiers in Bioinorganic Chemistry ( A. V. Xavier, ed.), VCH Publishers, New York, pp. 391–398.Google Scholar
  16. Fu, C., and Maier, R. J., 199la. Identification of a locus within the hydrogenase gene cluster involved in intracellular nickel metabolism in Bradyrhizobium japonicum, Appl. Environ. Microbiol. 57: 3502–3510.Google Scholar
  17. Fu, C., and Maier, R. J., 1991 b. Competitive inhibition of an energy-dependent nickel transport system by divalent cations in Bradyrhizobium japonicum JH, Appl. Environ. Microbiol. 57: 3511–3516.Google Scholar
  18. Fuhrmann, G. F., and Rothstein, A., 1968a. The transport of Zn+2, Co’, and Ni’ into yeast cells, Biochim. Biophys. Acta 163: 325–330.CrossRefPubMedGoogle Scholar
  19. Fuhrmann, G. F., and Rothstein, A., 1968b. The mechanism of the partial inhibition of fermentation in yeast by nickel ions, Biochim. Biophys. Acta 163: 331–338.CrossRefPubMedGoogle Scholar
  20. Gadd, G. M., and Griffiths, A. J., 1978. Microorganisms and heavy metal toxicity, Microb. Ecol. 4: 303–317.CrossRefGoogle Scholar
  21. Hmiel, S. P., Snavely, M. D., Miller, C. G., and Maguire, M. E., 1986. Magnesium transport in Salmonella typhimurium: Characterization of magnesium influx and cloning of a transport gene, J. Bacteriol. 168: 1444–1450.PubMedGoogle Scholar
  22. Hmiel, S. P., Snavely, M. D., Florer, J. B., Maguire, M. E., and Miller, C. G., 1989. Magnesium transport in Salmonella typhimurium: Genetic characterization and cloning of three magnesium transport loci, J. Bacteriol. 171: 4742–4751.PubMedGoogle Scholar
  23. Hughs, M. N., and Poole, R. K., 1991. Metal speciation and microbial growth-the hard (and soft) facts, J. Gen. Microbiol. 137: 725–734.Google Scholar
  24. Jarrell, K. F., and Sprott, G. D., 1982. Nickel transport in Methanobacterium bryantii, J. Bacteriol. 151: 1195–1203.PubMedGoogle Scholar
  25. Jasper, P., and Silver, S., 1977. Magnesium transport in microorganisms, in Microorganisms and Minerals ( E. D. Weinberg, ed.), Marcel Dekker, New York, pp. 7–47.Google Scholar
  26. Joho, M., Imada, Y., and Murayama, T., 1987. The isolation and characterization of Ni+2 resistant mutants of Saccharomyces cerevisiae, Microbios 51:183–190.Google Scholar
  27. Joho, M., Inouhe, M., Tohoyama, H., and Murayama, T., 1990. A possible role of histidine in a nickel resistant mechanism of Saccharomyces cerevisiae, FEMS Microbiol. Lett. 66: 333338.Google Scholar
  28. Joho, M., Ishikawa, Y., Kunikane, M., Inouhe, M., Tohoyama, H., and Murayama, T., 1992. The subcellular distribution of nickel in Ni-sensitive and Ni-resistant strains of Saccharomyces cerevisiae, Microbios 71:149–159.Google Scholar
  29. Kaltwasser, H. and Frings, W., 1980. Transport and metabolism of nickel in microorganisms, in Nickel in the Environment (J. O. Nriagu, ed.), John Wiley & Sons, New York, pp. 463491.Google Scholar
  30. Kaur, P., Roß, K., Siddiqui, R. A., and Schlegel, H. G., 1990. Nickel resistance of Alcaligenes denitriftcans strain 4a-2 is chromosomally coded, Arch. Microbiol. 154: 133–138.CrossRefGoogle Scholar
  31. Liesegang, H., Lemke, K., Siddiqui, R. A., and Schlegel, H.-G., 1993. Characterization of the inducible nickel and cobalt resistance determinant cnr from pMOL28 ofAlcaligenes eutrophus CH34, J. Bacteriol. 175: 767–778.PubMedGoogle Scholar
  32. Lohmeyer, M., and Friedrich, C. G., 1987. Nickel transport in Alcaligenes eutrophus, Arch. Microbi ol. 149: 130–135.CrossRefGoogle Scholar
  33. Lundie, L. L., Jr., Yang, H., Heinonen, J. K., Dean, S. I., and Drake, H. L., 1988. Energy-dependent, high-affinity transport of nickel by the acetogen Clostridium thermoaceticum, J. Bacteriol. 170: 5705–5708.PubMedGoogle Scholar
  34. Maier, R. J., Pihl, T. D., Stults, L., and Sray, W., 1990. Nickel accumulation and storage in Bradyrhizobium japonicum, J. Bacteriol. 56: 1905–1911.Google Scholar
  35. Martin, R. B., 1988a. Nickel ion binding to amino acids and peptides, in Nickel and Its Role in Biology (H. Sigel and A. Sigel, eds.), Metal Ions in Biological Systems, Vol. 23, Marcel Dekker, New York, pp. 124–164.Google Scholar
  36. Martin, R. B., 1988b. Nickel ion binding to nucleosides and nucleotides, in Nickel and Its Role in Biology (H. Sigel and A. Sigel, eds.), Metal Ions in Biological Systems, Vol. 23, Marcel Dekker, New York, pp. 315–330.Google Scholar
  37. Mergeay, M., Nies, D., Schlegel, H. G., Gems, J., Charles, P., and van Gijsegem, F., 1985. Alcaligenes eutrophus CH34 is a facultative chemolithotroph with plasmid-bound resistance to heavy metals, J. Bacteriol. 162: 328–334.Google Scholar
  38. Mishra, D., and Kar, M., 1974. Nickel in plant growth and metabolism, Bot. Rev. 40:395–452. Mohan, P. M., and Sastry, K. S., 1983. Interrelationships in trace-element metabolism in metal toxicities in nickel-resistant strains of Neurospora crassa, Biochem. J. 212: 205–210.Google Scholar
  39. Mohan, P. M., Rudra, M. P. P., and Sastry, K. S., 1984. Nickel transport in nickel-resistant strains of Neurospora crassa, Curr. Microbiol. 10: 125–128.Google Scholar
  40. National Research Council, 1975. Nickel, National Academy of Sciences, Washington, D.C. Nies, D. H., 1992. Resistance to cadmium, cobalt, zinc, and nickel in microbes, Plasmid 27: 1728.Google Scholar
  41. Nies, D. H., and Silver, S., 1989. Plasmid-determined inducible efflux is responsible for resistance to cadmium, zinc, and cobalt in Alcaligenes eutrophus, J. Bacteriol. 171: 896–900.PubMedGoogle Scholar
  42. Nies, A., Nies, D. H., and Silver, S., 1989. Cloning and expression of plasmid genes encoding resistances to chromate and cobalt in Alcaligenes eutrophus, J. Bacteriol. 171: 5065–5070.PubMedGoogle Scholar
  43. Park, M. H., Wong, B. B., and Lusk, J. E., 1976. Mutants in three genes affecting transport of magnesium in Escherichia coli: Genetics and physiology, J. Bacteriol. 126: 1096–1103.PubMedGoogle Scholar
  44. Richardson, D. H. S., Beckett, P. J., and Nieboer, E., 1980. Nickel in lichens, bryophytes, fungi and algae, in Nickel in the Environment ( J. O. Nriagu, ed.), John Wiley & Sons, New York, pp. 367–406.Google Scholar
  45. Schlegel, H. G., Cosson, J.-P., and Baker, A. J. M., 1991. Nickel-hyperaccumulating plants provide a niche for nickel-resistant bacteria, Bot. Acta 104: 18–25.Google Scholar
  46. Schmidt, T., and Schlegel, H. G., 1989. Nickel and cobalt resistance of various bacteria isolated from soil and highly polluted domestic and industrial wastes, FEMS Microbiol. Lett. 62: 315–328.CrossRefGoogle Scholar
  47. Schmidt, T., Stoppel, R. D., and Schlegel, H. G., 1991. High-level nickel resistance in Alcaligenes xylosoxydans 31A and Alcaligenes eutrophus KTO2, Appl. Environ. Microbiol. 57: 33013309.Google Scholar
  48. Sensfuss, C., and Schlegel, H. G., 1988. Plasmid pMOL28-encoded resistance to nickel is due to specific efflux, FEMS Microbiol. Lett. 55: 295–298.CrossRefGoogle Scholar
  49. Siddiqui, R. A., and Schlegel, H. G., 1987. Plasmid pMOL28-mediated inducible nickel resistance in Alcaligenes eutrophus strain CH34, FEMS Microbiol. Leu. 43: 9–13.CrossRefGoogle Scholar
  50. Siddiqui, R. A., Schlegel, H. G., and Meyer, M., 1988. Inducible and constitutive expression of pMOL28-encoded nickel resistance in Alcaligenes eutrophus N9A, J. Bacteriol. 170: 41884193.Google Scholar
  51. Siddiqui, R. A., Benthin, K., and Schlegel, H. G., 1989. Cloning of pMOL28-encoded nickel resistance genes and expression of the genes in Alcaligenes eutrophus and Pseudomonas spp., J. Bacteriol. 171:5071–5078.Google Scholar
  52. Silver, S., Nuciforma, G., Chu, L., and Misra, T. K., 1989. Bacterial resistance ATPases: Primary pumps for exporting cations and anions, Trends Biochem. Sci. 14: 76–80.CrossRefPubMedGoogle Scholar
  53. Singh, A. L., Asthana, R. K., Srivastava, S. C., and Singh, S. P., 1992. Nickel uptake and its localization in a cyanobacterium, FEMS Microbiol. Lett. 99: 165–168.Google Scholar
  54. Skaar, H., Rystad, B., and Jensen, A., 1974. The uptake of “Ni by the diatom Phaeodactylum tricornutum, Physiol. Plant 32: 353–358.CrossRefGoogle Scholar
  55. Smith, D. H., 1967. R factors mediate resistance to mercury, nickel, and cobalt, Science 156: 114–116.CrossRefGoogle Scholar
  56. Snavely, M. D., Florer, J. B., Miller, C. G., and Maguire, M. E., 1989a. Magnesium transport in Salmonella typhimurium: Expression of cloned genes for three distinct Mgt+ transport systems, J. Bacteriol. 171 . 4752–4760.Google Scholar
  57. Snavely, M. D., Florer, J. B., Miller, C. G., and Maguire, M. E., 1989b. Magnesium transport in Salmonella typhimurium: 28Mg2+ transport by the CorA, MgtA, and MgtB systems, J. Bacteriol. 171: 4761–4766.PubMedGoogle Scholar
  58. Snavely, M. D., Miller, C. G., and Maguire, M. E., 1991a. The mgtB Mgt+ transport locus of Salmonella typhimurium encodes a P-type ATPase, J. Biol. Chem. 266: 815–823.PubMedGoogle Scholar
  59. Snavely, M. D., Gravina, S. A., Cheung, T. T., Miller, C. G., and Maguire, M. E., 1991b. Magnesium transport in Salmonella typhimurium. Regulation of mgtA and mgtB expression, J. Biol. Chem. 266: 824–829.PubMedGoogle Scholar
  60. Soeder, C. J., and Engelmann, G., 1984. Nickel requirement in Chlorella emersonii, Arch. Microbiol. 137: 85–87.CrossRefGoogle Scholar
  61. Sprott, G. D., Jarrell, K. F., Shaw, K. M., and Knowles, R., 1982. Acetylene as an inhibitor of methanogenic bacteria, J. Gen. Microbiol. 128: 2453–2462.Google Scholar
  62. Stults, L. W., Mallick, S., and Maier, R. J., 1987. Nickel uptake in Bradyrhizobium japonicum, J. Bacterial. 169: 1398–1402.Google Scholar
  63. Tabillion, R., and Kaltwasser, H., 1977. Energieabhangige 63Ni-aufnahme bei Alcaligenes eutrophus stamm H l and H16, Arch. Microbiol. 113: 145–151.CrossRefPubMedGoogle Scholar
  64. Takakuwa, S., 1987. Nickel uptake in Rhodopseudomonas capsulata, Arch. Microbiol. 149: 5761.CrossRefGoogle Scholar
  65. Van Baalen, C., and O’Donnell, R., 1978. Isolation of a nickel-dependent blue-green alga, J. Gen. Microbiol. 105: 351–353.Google Scholar
  66. Varma, A. K., Sensfuß, C., and Schlegel, H. G., 1990. Inhibitor effects on the accumulation and efflux of nickel ions in plasmid pMOL28-harboring strains of Alcaligenes eutrophus, Arch. Microbiol. 154: 42–49.CrossRefGoogle Scholar
  67. Webb, M., 1970a. The mechanism of acquired resistance to Co’ and Ni z in Gram-positive and Gram-negative bacteria, Biochim. Biophys. Acta 222: 440–445.CrossRefPubMedGoogle Scholar
  68. Webb, M., 1970b. Interrelationships between the utilization of magnesium and the uptake of other bivalent cations by bacteria, Biochim. Biophys. Acta 222: 428–439.CrossRefPubMedGoogle Scholar
  69. Wildung, R. E., Garland, T. R., and Drucker, H., 1979. Nickel complexes with soil microbial metabolites-mobility and speciation in soils, in Chemical Modeling in Aqueous Systems (A. Jenne, ed.), ACS Symposium Series No. 93, American Chemical Society, Washington, D.C., pp. 181–200.Google Scholar
  70. Willecke, K., Gries, E.-M., and Oehr, P., 1973. Coupled transport of citrate and magnesium in Bacillus subtilis, J. Biol. Chem. 248: 807–814.PubMedGoogle Scholar
  71. Wolfram, L., Eitinger, T., and Friedrich, B., 1991. Construction and properties of a triprotein containing the high-affinity nickel transporter of Alcaligenes eutrophus, FEBS Lett. 283: 109112.Google Scholar
  72. Wu, L. F., and Mandrand-Berthelot, M.-A., 1986. Genetic and physiological characterization of new Escherichia coli mutants impaired in hydrogenase activity, Biochimie 68: 167–179.CrossRefPubMedGoogle Scholar
  73. Wu, L.-F., Mandrand-Berthelot, M.-A., Waugh, R., Edmonds, C. J., and Boxer, D. H., 1989. Nickel deficiency gives rise to the defective hydrogenase phenotype of hydC and fnr mutants in Escherichia cols, Mol. Microbiol. 3: 1709–1718.CrossRefPubMedGoogle Scholar
  74. Wu, L.-F., Navarro, C., and Mandrand-Berthelot, M.-A., 1991. The hydC region contains a multicistronic operon (nik) involved in nickel transport in Escherichia coli, Gene 107: 37–42.CrossRefPubMedGoogle Scholar
  75. Yang, H., Daniel, S. L., Hsu, T., and Drake, H. L., 1989. Nickel transport by the thermophilic acetogen Acetogenium kivui, Appl. Environ. Microbiol. 55: 1078–1081.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Robert P. Hausinger
    • 1
  1. 1.Departments of Microbiology and BiochemistryMichigan State UniversityEast LansingUSA

Personalised recommendations