LC-MS and LC-MS-MS for Biomedical Analyses

  • A. P. Bruins
Part of the Methodological Surveys in Biochemistry and Analysis book series (MSBA, volume 18 A)

Abstract

The identification of components separated by LC* can be done either by preparative chromatography and off-line MS or, with advantages, by on-line LC-MS.θ The moving belt and DLI are the oldest commercially available interfaces. The belt allows EI, CI or FAB to be chosen for ionisation, but samples may suffer from thermal degradation. DLI is limited to CI and suits thermolabile samples, but the 5 μm orifice in the interface is easily blocked. DLI has been replaced by thermospray LC-MS, which has become less elaborate and is now available in nearly all spectrometers on the market.

Keywords

Select Reaction Monitoring Xenon Atom Pneumatic Nebulizer Collision Chamber Analyte Desorption 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviation

LC

liquid chromatography (HPLC)

MS

mass spectrometry

API

atmospheric pressure ionization

CI

chemical ionization

DLI

direct liquid introduction

EI

electron impact

FAB

fast atom bombardment

SIM

selected ion monitoring.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bruins, A.P. (1985) J. Chromatog. 323, 99–112.CrossRefGoogle Scholar
  2. 2.
    Blakeley, C.R. & Vestal, M.L. (1983) Anal. Chem. 55, 750–754.CrossRefGoogle Scholar
  3. 3.
    Covey, T.R., Lee, E.D., Bruins, A.P. & Henion, J.D. (1986) Anal. Chem. 58, 1451A–1461A.CrossRefGoogle Scholar
  4. 4.
    Bruins, A.P. (1986) Adv. Mass Spectrom. 10, 119–131.Google Scholar
  5. 5.
    Harrison, A.G. (1983) Chemical Ionisation Mass Spectrometry, CRC Press, Boca Raton, FL, pp. 7–55.Google Scholar
  6. 6.
    Kresbach, G.M., Baker, T.R., Nelson, R.J., Wronka, J., Karger, B.L. & Vouros, P. (1987) J. Chromatog. 394, 89–100.CrossRefGoogle Scholar
  7. 7.
    Van der Greef, J., Tas, A.C., Rijk, M.A.H., Ten Noever de Brauw, M.C., Höhn, M., Meyerhoff, G. & Rapp, U. (1985) J. Chromatog. 343, 397–401.Google Scholar
  8. 8.
    Games, D.E., McDowall, M.A., Levsen, K., Schäfer, K.H., Dobberstein, P. & Gower, J.L. (1984) Biomed. Mass Spectrom. 11, 87–95.CrossRefGoogle Scholar
  9. 9.
    Dobberstein, P., Korte, E., Meyerhoff, G. & Pesch, R. (1983) Int. J. Mass Spectrom. Ion Phys. 46, 185–188.CrossRefGoogle Scholar
  10. 10.
    Van der Greef, J., Tas, A.C., Ten Noever de Brauw, M.C., Höhn, M., Meyerhoff, G. & Rapp, U. (1985) J. Chromatog. 323, 81–87.CrossRefGoogle Scholar
  11. 11.
    Lant, M.S., Martin, L.E. & Oxford, J. (1985) J. Chromatog. 323, 143–152.CrossRefGoogle Scholar
  12. 12.
    Vestal, M.L. (1983) Mass Spectrom. Rev. 2, 447–480.CrossRefGoogle Scholar
  13. 13.
    Schmelzeisen-Redeker, G., Röllgen, F.W., Wirtz, H. & Vögtle, F. (1985) Org. Mass Spectrom. 20, 752–756.CrossRefGoogle Scholar
  14. 14.
    Schellenberg, K.H., Linder, M., Groeppelin, A. & Erni, F. (1987) J. Chromatog. 394, 239–252.CrossRefGoogle Scholar
  15. 15.
    Lant, M.S., Oxford, J. & Martin, L.E. (1987) J. Chromatog. 394, 223–230.CrossRefGoogle Scholar
  16. 16.
    McFadden, W.H., Garteiz, D.A. & Siegmund, E.G. (1987) J. Chromatog. 394, 101–108.CrossRefGoogle Scholar
  17. 17.
    Chapman, J.R. & Pratt, J.A.E. (1987) J. Chromatog. 394, 231–238.CrossRefGoogle Scholar
  18. 18.
    Liberato, D.J., Fenselau, C.C., Vestal, M.L. & Yergey, A.L. (1983) Anal. Chem. 55, 1741–1744.CrossRefGoogle Scholar
  19. 19.
    Watson, D., Taylor, D.W., & Murray, S. (1985) Biomed. Mass Spectrom. 12, 610–615.CrossRefGoogle Scholar
  20. 20.
    Ashcroft, A.E., Chapman, J.R. & Cottrell, J.S. (1987) J. Chromatog. 394, 15–20.CrossRefGoogle Scholar
  21. 21.
    Horning, E.C., Carroll, D.I., Dzidic, I., Haegele, K.D., Horning, M.G. & Stillwell, R.N. (1974) J. Chromatog. 99, 13–21.CrossRefGoogle Scholar
  22. 22.
    Lane, D.A., Thomson, B.A., Lovett, A.M. & Reid, N.M. (1980) Adv. Mass Spectrom. 8, 1480–1489.Google Scholar
  23. 23.
    Covey, T.R., Lee, E.D. & Henion, J.D. (1986) Anal. Chem. 58, 2453–2460.CrossRefGoogle Scholar
  24. 24.
    Iribarne, J.V., Dziedzic, P.J. & Thomson, B.A. (1983) Int. J. Mass Spectrom. Ion Phys. 50, 331–347.CrossRefGoogle Scholar
  25. 25.
    Whitehouse, CM., Dreyer, R.N., Yamashita, M. & Fenn, J.B. (1985) Anal. Chem. 57, 675–679.CrossRefGoogle Scholar
  26. 26.
    Aleksandrov, M.L., Gall, L.N., Krasnov, N.V., Nikolaev, V.I. & Shkurov, V.A. (1985) Zh. Anal. Khim. 40, 1570–1580.Google Scholar
  27. 27.
    Bruins, A.P., Covey, T.R. & Henion, J.D. (1987) Anal. Chem. 59, 2642–2646.CrossRefGoogle Scholar
  28. 28.
    Olivares, J.A., Nguyen, N.T., Yonker, C.R. & Smith, R.D. (1987) Anal. Chem. 59, 1230–1232.CrossRefGoogle Scholar
  29. 29.
    Ito, Y., Takeuchi, T., Ishii, D. & Goto, M. (1985) J. Chromatog. 346, 161–166.CrossRefGoogle Scholar
  30. 30.
    Caprioli, R.M., Fan, T. & Cottrell, J.S. (1986) Anal. Chem. 58, 2949–2954.CrossRefGoogle Scholar
  31. 31.
    McLafferty, F.W., ed. (1983) Tandem Mass Spectrometry, Wiley, New York: e.g. pp. 41–66 (K. Levsen).Google Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • A. P. Bruins
    • 1
  1. 1.Department of PharmacyState UniversityGroningenThe Netherlands

Personalised recommendations