Bioanalysis of Drugs and Metabolites, Especially Anti-Inflammatory and Cardiovascular pp 235-244 | Cite as
Micellar Liquid Chromatography
Abstract
Micelles are notable for their ability to solubilize hydrophobic compounds in aqueous solution. Micellar solutions can help in improving analytical methodologies and in developing entirely new concepts in analytical chemistry; they have been studied especially as HPLC mobile phases. The micelles provide a hydrophobic site for interaction with solutes in the mobile phase and can replace traditional modifiers such as methanol or acetonitrile in RP-HPLC*. We have studied the Chromatographic capabilities of these unique mobile phases — capabilities that are unrealizable with traditional mobile phases. One such advantage is in gradient elution, never popular in repetitive analyses by RP-HPLC because of the slow re-equilibration of the stationary phase after a change in mobile phase composition. We have shown that micelle concentration gradients speed the elution of strongly retained compounds without altering stationary phase ocmposition. This allows a step-gradient back to initial conditions and obviates column re-equilibration. Furthermore, if the conductivity of the two solutions of different micelle concentrations is balanced, micellar gradients are compatible with EC detection — again in contrast with hydro-organic mobile phases. Serum or urine can be directly injected onto a RP column for therapeutic drug monitoring.
Keywords
Therapeutic Drug Monitoring Organic Modifier Lauryl Ether Micellar Liquid Chromatography Mobile Phase ComponentAbbreviation
- RP
reversed phase
- EC
electrochemical
- CMC
critical micelle concentration
- QSAR
quantitative structure-activity relationship
- EMIT
enzyme-multiplied immunoassay
Preview
Unable to display preview. Download preview PDF.
References
- 1.Armstrong, D.W. & Henry, S.J. (1980) J. Liq. Chromatog. 3, 657–662.CrossRefGoogle Scholar
- 2.Hinze, W.L. & Armstrong, D.W., eds. (1987) Ordered Media in Chemical Separations, Am. Chem. Soc. Symp. Ser., 342, 293 pp.Google Scholar
- 3.Foley, J.P. & May, W.E. (1987) Anal. Chem. 59, 102–109.CrossRefGoogle Scholar
- 4.Foley, J.P. & May, W.E. (1987) Anal. Chem. 59, 110–115.CrossRefGoogle Scholar
- 5.Dorsey, J.G. (1987) Chromatog. Mag. 2(4), 13–20.Google Scholar
- 6.Dorsey, J.G. (1987) Adv. Chromatog. 27, 167–214.Google Scholar
- 7.Cline Love, L.J., Habarta, J.G. & Dorsey, J.G. (1984) Anal. Chem. 56, 1132A–1148A.Google Scholar
- 8.Dorsey, J.G., DeEchegaray, M.T. & Landy, J.S. (1983) Anal. Chem. 55, 924–928.CrossRefGoogle Scholar
- 9.Landy, J.S. & Dorsey, J.G. (1985) Anal. Chim. Acta 178, 179–188.CrossRefGoogle Scholar
- 10.DeLuccia, F.J., Arunyanart, M. & Cline Love, L.J. (1985) Anal. Chem. 57, 1564–1568.CrossRefGoogle Scholar
- 11.Arunyanart, M. & Cline Love, L.J. (1985) J. Chromatog. 342, 293–301.Google Scholar
- 12.DeLuccia, F.J., Arunyanart, M., Yarmchuk, P., Weinberger, R. & Cline Love, L.J. (1985) LC Mag. 3, 794–800.Google Scholar
- 13.Roth, W., Beschke, K., Jauch, R., Zinner, A. & Koss, F.W. (1981) J. Chromatog. 222, 13–22.Google Scholar
- 14.van Buuren, C., Lawrence, J.F., Brinkman, U.A. Th., Honigberg, I.L. & Frei, R.W. (1980) Anal. Chem. 52, 700–704.CrossRefGoogle Scholar
- 15.Hagestam, I.H. & Pinkerton, T.C. (1985) Anal. Chem. 57, 1757–1763.CrossRefGoogle Scholar
- 16.Stratton, L.P., Hynes, J.B., Priest, D.G., Doig, M.T., Barron, D.A. & Asleson, G.L. (1986) J. Chromatog. 357, 183–189.CrossRefGoogle Scholar
- 17.Snyder, L.R. (1980) in High Performance Liquid Chromatography: Advances and Perspectives (Horvath, C., ed.), V. 1, Acad. Press, N.Y., 207–316.Google Scholar
- 18.Landy, J.S. & Dorsey, J.G. (1934) J. Chromatog. Sci. 22, 68–70.CrossRefGoogle Scholar
- 19.Dorsey, J.G., Khaledi, M.G., Landy, J.S. & Lin, J-L. (1984) J. Chromatog. 316, 183–191.CrossRefGoogle Scholar
- 20.Khaledi, M.G. & Dorsey, J.G. (1985) Anal. Chem. 57, 2190–2196.CrossRefGoogle Scholar
- 21.Kirkland, J.J., Yau, W.W., Stoklosa, H.J. & Dilks, C.H., Jr. (1977) J. Chromatog. Sci. 15, 303–316.CrossRefGoogle Scholar
- 22.Bidlingmeyer, B.A. & Warren, F.V., Jr. (1984) Anal. Chem. 56, 1583A–1596A.CrossRefGoogle Scholar
- 23.Foley, J.P. & Dorsey, J.G. (1983) Anal. Chem. 55, 730–737.CrossRefGoogle Scholar
- 24.Snyder, L.R. & Kirkland, J.J. (1979) Introduction to Modern Liquid Chromatography, 2nd edn., Wiley-Interscience, New York: p. 298.Google Scholar
- 25.Scott, R.P.W. & Simpson, C.F. (1980) Faraday Symp. Chem. Soc. 15, 69–82.CrossRefGoogle Scholar
- 26.Armstrong, D.W. & Nome, F. (1981) Anal. Chem. 53, 1662–1666.CrossRefGoogle Scholar
- 27.Arunyanart, M. & Cline Love, L.J. (1984) Anal. Chem. 56, 1557–1561.CrossRefGoogle Scholar
- 28.Gago, F., Alvarez-Builla, J., Elguero, J. & Diez-Masa, J.C. (1987) Anal. Chem. 59, 921–923.CrossRefGoogle Scholar