Abstract

Micelles are notable for their ability to solubilize hydrophobic compounds in aqueous solution. Micellar solutions can help in improving analytical methodologies and in developing entirely new concepts in analytical chemistry; they have been studied especially as HPLC mobile phases. The micelles provide a hydrophobic site for interaction with solutes in the mobile phase and can replace traditional modifiers such as methanol or acetonitrile in RP-HPLC*. We have studied the Chromatographic capabilities of these unique mobile phases — capabilities that are unrealizable with traditional mobile phases. One such advantage is in gradient elution, never popular in repetitive analyses by RP-HPLC because of the slow re-equilibration of the stationary phase after a change in mobile phase composition. We have shown that micelle concentration gradients speed the elution of strongly retained compounds without altering stationary phase ocmposition. This allows a step-gradient back to initial conditions and obviates column re-equilibration. Furthermore, if the conductivity of the two solutions of different micelle concentrations is balanced, micellar gradients are compatible with EC detection — again in contrast with hydro-organic mobile phases. Serum or urine can be directly injected onto a RP column for therapeutic drug monitoring.

Keywords

Therapeutic Drug Monitoring Organic Modifier Lauryl Ether Micellar Liquid Chromatography Mobile Phase Component 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviation

RP

reversed phase

EC

electrochemical

CMC

critical micelle concentration

QSAR

quantitative structure-activity relationship

EMIT

enzyme-multiplied immunoassay

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Armstrong, D.W. & Henry, S.J. (1980) J. Liq. Chromatog. 3, 657–662.CrossRefGoogle Scholar
  2. 2.
    Hinze, W.L. & Armstrong, D.W., eds. (1987) Ordered Media in Chemical Separations, Am. Chem. Soc. Symp. Ser., 342, 293 pp.Google Scholar
  3. 3.
    Foley, J.P. & May, W.E. (1987) Anal. Chem. 59, 102–109.CrossRefGoogle Scholar
  4. 4.
    Foley, J.P. & May, W.E. (1987) Anal. Chem. 59, 110–115.CrossRefGoogle Scholar
  5. 5.
    Dorsey, J.G. (1987) Chromatog. Mag. 2(4), 13–20.Google Scholar
  6. 6.
    Dorsey, J.G. (1987) Adv. Chromatog. 27, 167–214.Google Scholar
  7. 7.
    Cline Love, L.J., Habarta, J.G. & Dorsey, J.G. (1984) Anal. Chem. 56, 1132A–1148A.Google Scholar
  8. 8.
    Dorsey, J.G., DeEchegaray, M.T. & Landy, J.S. (1983) Anal. Chem. 55, 924–928.CrossRefGoogle Scholar
  9. 9.
    Landy, J.S. & Dorsey, J.G. (1985) Anal. Chim. Acta 178, 179–188.CrossRefGoogle Scholar
  10. 10.
    DeLuccia, F.J., Arunyanart, M. & Cline Love, L.J. (1985) Anal. Chem. 57, 1564–1568.CrossRefGoogle Scholar
  11. 11.
    Arunyanart, M. & Cline Love, L.J. (1985) J. Chromatog. 342, 293–301.Google Scholar
  12. 12.
    DeLuccia, F.J., Arunyanart, M., Yarmchuk, P., Weinberger, R. & Cline Love, L.J. (1985) LC Mag. 3, 794–800.Google Scholar
  13. 13.
    Roth, W., Beschke, K., Jauch, R., Zinner, A. & Koss, F.W. (1981) J. Chromatog. 222, 13–22.Google Scholar
  14. 14.
    van Buuren, C., Lawrence, J.F., Brinkman, U.A. Th., Honigberg, I.L. & Frei, R.W. (1980) Anal. Chem. 52, 700–704.CrossRefGoogle Scholar
  15. 15.
    Hagestam, I.H. & Pinkerton, T.C. (1985) Anal. Chem. 57, 1757–1763.CrossRefGoogle Scholar
  16. 16.
    Stratton, L.P., Hynes, J.B., Priest, D.G., Doig, M.T., Barron, D.A. & Asleson, G.L. (1986) J. Chromatog. 357, 183–189.CrossRefGoogle Scholar
  17. 17.
    Snyder, L.R. (1980) in High Performance Liquid Chromatography: Advances and Perspectives (Horvath, C., ed.), V. 1, Acad. Press, N.Y., 207–316.Google Scholar
  18. 18.
    Landy, J.S. & Dorsey, J.G. (1934) J. Chromatog. Sci. 22, 68–70.CrossRefGoogle Scholar
  19. 19.
    Dorsey, J.G., Khaledi, M.G., Landy, J.S. & Lin, J-L. (1984) J. Chromatog. 316, 183–191.CrossRefGoogle Scholar
  20. 20.
    Khaledi, M.G. & Dorsey, J.G. (1985) Anal. Chem. 57, 2190–2196.CrossRefGoogle Scholar
  21. 21.
    Kirkland, J.J., Yau, W.W., Stoklosa, H.J. & Dilks, C.H., Jr. (1977) J. Chromatog. Sci. 15, 303–316.CrossRefGoogle Scholar
  22. 22.
    Bidlingmeyer, B.A. & Warren, F.V., Jr. (1984) Anal. Chem. 56, 1583A–1596A.CrossRefGoogle Scholar
  23. 23.
    Foley, J.P. & Dorsey, J.G. (1983) Anal. Chem. 55, 730–737.CrossRefGoogle Scholar
  24. 24.
    Snyder, L.R. & Kirkland, J.J. (1979) Introduction to Modern Liquid Chromatography, 2nd edn., Wiley-Interscience, New York: p. 298.Google Scholar
  25. 25.
    Scott, R.P.W. & Simpson, C.F. (1980) Faraday Symp. Chem. Soc. 15, 69–82.CrossRefGoogle Scholar
  26. 26.
    Armstrong, D.W. & Nome, F. (1981) Anal. Chem. 53, 1662–1666.CrossRefGoogle Scholar
  27. 27.
    Arunyanart, M. & Cline Love, L.J. (1984) Anal. Chem. 56, 1557–1561.CrossRefGoogle Scholar
  28. 28.
    Gago, F., Alvarez-Builla, J., Elguero, J. & Diez-Masa, J.C. (1987) Anal. Chem. 59, 921–923.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • John G. Dorsey
    • 1
  1. 1.Department of ChemistryUniversity of FloridaGainesvilleUSA

Personalised recommendations