Bee Products pp 185-201 | Cite as

The Role of Hymenopterous Venoms in Nature

  • Eli Zlotkin

Abstract

Venom is defined as a mixture of substances which are produced in specialized glandular tissues in the body of the venomous animal and introduced by the aid of a stinging-piercing apparatus into the body of its prey or opponent in order to paralyze and/or kill it. The academic interests in the topic of venoms (Toxinology) is substantially based on considerations concerning (a) public health, dealing with clinical pathological problems of human envenomation and (b) pharmacology-neuropharmacology, which views venoms as a potential source of useful substances for medicine, industry and biological research [1].

Keywords

Venom Gland Social Wasp Wasp Venom Venomous Animal Alarm Substance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Shier, W.T. and Mebs, D. (Eds.) Handbook of Toxinology, Marcel Dekker, N.Y., 1990.Google Scholar
  2. 2.
    Zlotkin, E. In: Comprehensive Insect Physiology, Biochemistry and Pharmacology (Kerkut, E.A. and Gilbert, L.I., Eds.) Vol. 10, Pergamon, Oxford, 1985, pp. 499–546.Google Scholar
  3. 3.
    Hucho, F. and Ovchinnikov, Y.A. (Eds.) Toxins as Tools in Neurochemistry, de Gruyter, Berlin, 1983.Google Scholar
  4. 4.
    Berland, L.B. Superordre de Hymenopteroides. In: Traite de Zoologie, Vol. X(2). Masson, Paris, 1951.Google Scholar
  5. 5.
    Imms, A.D. A General Textbook of Entomology, Methuen, London, 1951.Google Scholar
  6. 6.
    Snodgrass, R.S. Principles of Insect Morphology. McGraw-Hill, New York and London, 1935.Google Scholar
  7. 7.
    O’Connor, R. and Peck, M.L. Venoms of apidae. In: Arthropod Venoms, Edited by S. Bettini. Springer, Berlin and New York, 1978, pp. 613–659.CrossRefGoogle Scholar
  8. 8.
    Rathmayer, W. Venoms of Sphecidae, Pompilidae, Multillidae and Bethylide. In: Anthropod Venoms, Edited by S. Bettini, Springer, Berlin and New York, 1978, pp. 661–690.CrossRefGoogle Scholar
  9. 9.
    Piek, T. and Simon-Thomas, R.T. (1969) Parlysing venoms of solitary wasps. Comp. Biochem. Physiol. 30, 13–31.CrossRefGoogle Scholar
  10. 10.
    Maschwitz, U.W.J. and Kloft, W. (1971) Morphology and function of venom apparatus of insects: bees, wasps, ants and caterpillars. In: Venomous Animals and the Venoms, Vol. 3, Venomous Invertebrates. Edited by W. Bucherl and E. Buckley. Academic Press, New York, pp. 1–56.Google Scholar
  11. 11.
    Beard, R.L. (1978) Venoms of Braconidae. In: Arthropod Venoms, Edited by S. Bettini, Springer, Berlin and New York, pp. 778–800.Google Scholar
  12. 12.
    Schmidt, J.O. (1982) Biochemistry of insect venoms. Ann. Rev. Ent. 27, 339–368.CrossRefGoogle Scholar
  13. 13.
    Blum, M.S. and Hermann, H.R. (1978) Venoms and venom apparatuses of the Formicidae. In: Arthropod Venoms, Edited by S. Bettini, Springer, Berlin and New York, pp. 801–899.CrossRefGoogle Scholar
  14. 14.
    Beard, R.L. (1952) The toxicology of Habrobracon venom: a study of natural insecticid. Conn. Agric. Exp. Stn. Bull. 562.Google Scholar
  15. 15.
    Rathmayer, W. (1962) Das Paralysierungsproblem beim Bienewolf Philanthus triangulum F. (Hym. Sphec.). Z. Vergl. Physiol, 45, 413–462.CrossRefGoogle Scholar
  16. 16.
    Rathmayer, W. (1962) Paralysis caused by the digger wasp Philanthus. Nature (Lond.), 196, 1148–1151.CrossRefGoogle Scholar
  17. 17.
    Steiner, A.L. (1962) Etude du comportement prédateur d’un hymenoptere sphegien: Liris nigra V.d. L. (= Notogonia pompliformis Pz), Ann. Sci. Nat. Zool. (Ser. 12) 4, 1–126.Google Scholar
  18. 18.
    Murray, J.A. (1964) A case of multiple bee stings. Cent. Afr. J. Med., 10, 249–251.Google Scholar
  19. 19.
    Edery, H., Ishay, J. Lass, I. and Gitter, S. (1972) Pharmacological activity of oriental hornet (Vespa orientalis) venom. Toxicon 10, 13–23.CrossRefGoogle Scholar
  20. 20.
    Beck, B. Bee Venom Therapy, Appleton-Century, New York, 1935.Google Scholar
  21. 21.
    Banks, B.E.C., Rumjanek, F.D., Sinclair, N.M. and Vernon, C.A. (1976) Possible therapeutic use of a peptide from bee venom. Bull. Inst. Pasteur 74, 137–144.Google Scholar
  22. 22.
    Schultz, R., Loos, M., Bub, F. and Arnold, P.I. (1980) Differentiation of hemolytically active-fluid-phase and cell-bound human Clq by an ant venom-derived polysacharide. J. Immunol. 124, 1251–1257.Google Scholar
  23. 23.
    Bucherl, W. Venomous chilopods or centipedes. In: Venomous Animals and their Venoms. Vol. 3 Venomous Invertebrates, Edited by W. Bucherl and E. Buckley, Academic Press, New York, 1971, pp. 169–195.Google Scholar
  24. 24.
    Blum, M.S. Chemical Defenses of Arthropods, Academic Press, New York and London, 1981.Google Scholar
  25. 25.
    Mashwitz, U. (1964) Gefahrenalarmstoffe und Gefahrenalrmierung bei sozialen Hymenopteren. Z. Vergl. Physiol. 47, 596–655.CrossRefGoogle Scholar
  26. 26.
    Maschwitz, U. (1966) Alarm substances and alarm behavior insocial insects. Vitam. Horm. 24, 267–290.CrossRefGoogle Scholar
  27. 27.
    Blum, M.S. and Brand, J.M. (1972) Social insect pheromones: their chemistry and function. Am. Zool. 12, 553–576.Google Scholar
  28. 28.
    Boch, R. and Shearer, D.A. (1966) Iso-pentyl acetate in stings of honeybees of different ages. J. Apic. Res. 5, 65–70.Google Scholar
  29. 29.
    Morse, R.A., Shearer, D.A., Boch, R. and Benton, A.W. (1967) Observations on alarm substances in the genus. Apis. J. Apic. Res. 6, 113–118.Google Scholar
  30. 30.
    Saslavsky, H., Ishay, J. and Ikan, R. (1973) Alarm substances as toxicants in the oriental hornet colony, Life Sci. 12, 135–144.CrossRefGoogle Scholar
  31. 31.
    Matsura, M. and Sakagami, Sh. F. (1973) A bionomic sketch of the giant hornet Vespa mandarinia, aserious pest of Japaneses epiculture. J. Fac. Sci. Hakkaido Univ. (Ser. VI) 19, 125–162.Google Scholar
  32. 32.
    Gaul, A.T. (1953) Additions to vespine biology XI defence flight. Bull. Brooklyn Ent. Soc., 48, 35–37.Google Scholar
  33. 33.
    Edery, H., Ishay, J., Gitter, S. and Joshua, H. Venoms of vespidae. In: Arthropod Venoms, Edited by S. Bettini, Springer, Berlin and New York, 1978, pp. 691–771.CrossRefGoogle Scholar
  34. 34.
    Rivnay, E. and Bytinski-Salz, H. (1949) The oriental hornet (Vespa orientalis L.) its biology in Israel. Bull. Agric. Res. Sia. Rechovot, 51, 36–42.Google Scholar
  35. 35.
    Kuhlhorn, F. (1961) Uber das Verhalten sozialer Falten wespen (Hymenoptera: Vespidae) beim Stalleinflug, innerhalb von Viehstallen und eim Fliegenfang Z. Angew. Zool. 48, 405–422.Google Scholar
  36. 36.
    Ishay, J. Bytinski-Salz, H. and Shulov, A. (1967) Contributions to the bionomics of the oriental hornet Vespa orientalis. Isr. J. Ent. 2, 45–106.Google Scholar
  37. 37.
    Sakagmi, Sh. and Fukushima, K. (1957) Some biological oservations on a hornet Vespa tropica var pulchra, with special referene to its dependence on Polites wasps. Treubia 24, 73–82.Google Scholar
  38. 38.
    Piek, T. (Ed.) Venoms of Hymenoptera. Academic Press, New York, 1986.Google Scholar
  39. 39.
    Akre, R.D. and Reed, H.C. Biology and distribution of social Hymenoptera. In: Handbook of Natural Toxins, Volume 2 (Anthony T. Tu Ed.), Marcel Dekker, New York, 1984, pp. 3–48.Google Scholar
  40. 40.
    Shipolini, R.A. Biochemistry of bee venom. In: Handbook of Natural Toxins, Volume 2 (Anthony T.Tu, Ed.) Marel Dekker, New York, 1984, pp. 49–86.Google Scholar
  41. 41.
    Levin, I.W. Vibrational studies of model membrane — melittin interactions. In: Handbook of Natural Toxins, volume 2 (Anthony T.Tu, Ed.) Marcel Dekker, New York, 1984, pp. 87–108.Google Scholar
  42. 42.
    Nakajima, T. Biochemistry of vespid venoms. In: Handbook of Natural Toxins, volume 2 (Anthony, T. Tu, Ed.) Marcel Dekker, New York, 1984, pp. 109–134.Google Scholar
  43. 43.
    Piek, T. Pharmacology of hymenoptera venoms. In: In: Handbook of Natural Toxins, volume 2 (Anthony, T. Tu, Ed.) Marcel Dekker, New York, 1984, pp. 135–186.Google Scholar
  44. 44.
    Zlotkin, E. Toxins derived from arthropod venoms specifically affecting isnects. In: Comprehensive Insect Physiology Biochemistry and Pharmacology, volume 10 (G.A. Kerkut and L.I. Gilbert, Eds.) Pergamon Press, Oxford, 1985, pp. 499–541.Google Scholar
  45. 45.
    Piek, T. Insect venoms and toxins. In: Comprehensive Insect Physiology Biochemistry and Pharmacology, volume 10 (G.A. Kerkut and L.I. Gilbert, Eds.) Pergamon Press, Oxford, 1985, pp. 595–634.Google Scholar
  46. 46.
    Hider, R.C. (1988) Honey bee venom: a rich source of pharmacologically active peptides. Endevour, 12, 60–65.CrossRefGoogle Scholar
  47. 47.
    Schmidt, J.O. (1995) toxinology of venoms from the honeybee genus Apis. Toxicon, 33, 917–927.CrossRefGoogle Scholar
  48. 48.
    Nakajima, T. Pharmacological Biochemistry of vespid venoms. In: Venoms of the Hymenoptera (Tom Piek, Ed.) Academic Press, London, 1986, pp. 309–324.Google Scholar
  49. 49.
    Breithaupt, H. and Habermann, E. (1968) Mastzelldegranulierendes Peptid (MDCD-Peptid) aus Bienengift: Isolierung biochimische und pharmakologische Eigenschaffen. Naunyn-Schmiedebergs Arch. Pharmakol. Exp. Pathol., 261, 252–270.CrossRefGoogle Scholar
  50. 50.
    Hirai, Y, Kuwada, M., Yasuhara, T., Yoshida, H. and Nakajima, T. (1979) A new mast cell degranulating peptidehomologous to mastoparan in the venom of the Japanese hornet (Vespa Xanthoptera). Chem. Pharm. Bull., 27, 1945–1946.CrossRefGoogle Scholar
  51. 51.
    Yasuhara, T. Hoshida, H. and Nakajima, T. (1977) Chemical investigation of hornet (Vespa xanthoptera Cameron) venom. The structure of a new bradykinin analogue “vespakinin”. Chem. Pharm. Bull., 25, 936–941.CrossRefGoogle Scholar
  52. 52.
    Haermann, E. and Jentsch, J. (1967) Sequenzanalyse des Melittins aus den tryptischen und peptischen spaltstucken. Hoppe-Seylers Z. Physiol. Chem,. 348, 37–50.CrossRefGoogle Scholar
  53. 53.
    Hegner, D., Schummer, U and Schnepel, G.H. (1973) The interaction of a lytic peptide, melittin with spinlabeled membranes. Biochim. Biophys. Acta, 291, 15–22.CrossRefGoogle Scholar
  54. 54.
    Bernheimer, A.W., Avigad, L.S. and Schmidt, J.O. (1980) A hemolytic polypeptide from the venom of the red harvester ant Pogomyrmex arbatus. Toxicon, 18, 271–278.CrossRefGoogle Scholar
  55. 55.
    Hoffman, D.R. (1994) Alergens in hymenoptora venoms. XXVI: The complete amino acid sequences of two vespid venom phospholipases. Int. Arch Allergy Immonol, 104, 184–190.CrossRefGoogle Scholar
  56. 56.
    Nakahata, W., Ishimoto, H., Mizuno, K., Ohizumi, Y. and Nakanishi, H. (1994) Dual effects of Mastoparan on intracellular free Ca+2 concentrations in human astrocytoma cells. Br. J. Pharmacol. 112, 299–303.CrossRefGoogle Scholar
  57. 57.
    Radermecker, M, Louis, R., Leclecq, M., Weber, T., Corhay, J.L. and Bury, T. (1994) Cytokine modulation of basophil histamine release in wasp venom allergy. Allergy, 49, 641–644.CrossRefGoogle Scholar
  58. 58.
    Dohtsu, K., Okumura, K., Higiwara, K., Palma, M.S. and Nakajima, T. (1993) Isolation and sequence analysis of peptides from the venom of Protonectarina sylveirae (Hymenoptera, Vespide). Nat. Toxins, 1, 271–276.CrossRefGoogle Scholar
  59. 59.
    Kawai, N. and Hori, S. Effect of hornet venom on crustacean neuromuscular junctions. In: Animal, Plant and Microbial Toxins. Vol. 2 (A. Ohsaka, K. Hayashi and Y. Sawai, Eds.), Plenum, New York, 1976, pp. 309–317.CrossRefGoogle Scholar
  60. 60.
    Abe, T., Kawai, N. and Niwa, A. (1982) Purification and properties of a presynaptically acting neurotoxin, Mandaratoxin, from hornet (Vespa mandarinia). Biochemistry, 21, 1693–1697.CrossRefGoogle Scholar
  61. 61.
    Piek, T., Hue, B., Le Corronc, H., Mantel, P., Gobbo, M. and Rocchi, R. (1993) Presynaptic block of transmission in the insect CNS by mono and di galactosyl analogues of vespulakinin 1, a wasp (Paravespula maculifrons) venom neurotoxin. Comp. Biochem. Physiol. C, 105, 189–196.CrossRefGoogle Scholar
  62. 62.
    Piek, T., May, T.E. and Spanjer, W. Paralysis of insect skeletal muscle by the venom of the digger wasp Philanthus triangulum F. In: Insect Neurobiology and pesticide action, Soc. Chem. Indust., London, 1980, pp. 219-226.Google Scholar
  63. 63.
    Piek, T. and Spanjer, W. Effects and chemical characterization of some paralysing venoms of solitary wasps. In: Pesticide and venom neurotoxicity (D.L. Shankland, R.M. Hollingworth and T. Smyth, Eds.), Plenum, New York, 1978, pp. 211–226.CrossRefGoogle Scholar
  64. 64.
    Usherwood, P.N.R. and Machili, P. (1968) Phrmacological properties of excitatory neuromuscular synapses in the locust, J. Exp. Biol., 49, 341–361.Google Scholar
  65. 65.
    May, T.E. and Piek, T. (1979) Neuromuscular block in locust skeletal muscle caused by a venom preparation made from the digger wasp Philanthus triangulum F. from Egypt. J. Insect Physiol., 25, 685–691.CrossRefGoogle Scholar
  66. 66.
    Rathmayer, W. (1966) The effect of the poison of spider and digger wasps on the prey. Mem. Inst. Butantan Simp. Int., 33, 651–657.Google Scholar
  67. 67.
    Piek, T., Mantel, P. and Jas, H. (1980a) Ion-channel block in insect muscle fibre membrane by the venom of the digger wasp Philanthus triangulum F. J. Insect Physiol., 26, 345–349.CrossRefGoogle Scholar
  68. 68.
    Piek, T., May, T.E. and Spanjer, W. (1980b) Paralysis of locomotion in insects by the venom of the digger was Philanthus triangulum. In: Insect Neurobiology and Pesticide Action (Neurotox 79). Society of Chemical Industry, London, pp. 219–226.Google Scholar
  69. 69.
    Clark, R.B., Donaldson, P.L. Gration, K.A.F., Lambert, J.J., Piek, T., Ramsey, W., Spanjer, W. and Usherwood, P.N.R. (1982) Block of locust muscle glutamate receptors by δ-Philanthotoxin occurs after receptor activation. Brain Res., 241, 105–114.CrossRefGoogle Scholar
  70. 70.
    Eldefrawi, A.T., Eldefrawi, M.E., Katsuhiro, K., Mansur, N.A., Nakanishi, K., Oltz, E. and Usherwood, P.N.R. (1988) Sstructure and synthesis of a potent glutamate receptor antagonist in wasp venom. Proc. Natl. Acad. Sci. USA, 85, 4910–4913.CrossRefGoogle Scholar
  71. 71.
    Drenth, D. (1974b) Susceptibility of different species of insects to an extract of the venom gland of the wasp Microbracon hebetor (Say). Toxicon, 12, 189–192.CrossRefGoogle Scholar
  72. 72.
    Tamashiro, M. (1971) A biological study of venoms of two species of Bracon. Tech. Bull. Hawaii Agric. Exp. Stn., 70.Google Scholar
  73. 73.
    Piek, T. and Engels, E. (1969) Action of the venom of the wasp Microbracon hebetor Say on larvae and adults of the moth Philosamia cynthia Hubn. Comp. Biochem. Physiol,. 28, 603–618.CrossRefGoogle Scholar
  74. 74.
    Piek, T., Mantel, P. and Engels, E. (1971) Neuromuscular block in insects caused by the venom of the digger wasp Philanthus triangulum L. Comp. Gen. Pharmacol, 2, 317–331.CrossRefGoogle Scholar
  75. 75.
    Walther, C. and Rathmayer, W. (1974) The effect of Habrobracon venom on excitatory neuromuscular transmission in insects. J. Comp. Physio., 89, 23–38.CrossRefGoogle Scholar
  76. 76.
    Piek, T., Veenendaal, R.L. and Mantel, P. (1982b) The pharmacology ofMicrobracon venom. Comp. Biochem. Physiol,. 72C, 303–309.Google Scholar
  77. 77.
    Rathmayer, W. and Walther, C. Mode of action and specificity of Habrobracon venom. In: Animal, Plant and Microbial Toxins (A. Ohsaka, K. Hayashi and Y Sawai, Eds.) Vol. 2, Plenum Press, New York, 1976, pp. 290–307.Google Scholar
  78. 78.
    Deitmer, J.W. (1973) Die Wirkung des Giftes der Schlupfwespe Habrobracon hebetor (Say) auf die neuromuskulare Ubertragung am Sartoriusmuskel des Frosches. Diplomarbeit, Uniersitat Bonn.Google Scholar
  79. 79.
    Spanier, W., Grosu, L. and Piek, T. (1977) two different paralyzing preparations obtained from a homogenate of the wasp Microbracon hebetor (Say) Toxicon, 15, 413–421.CrossRefGoogle Scholar
  80. 80.
    Quistad, G.B., Nguyen, Q., Bernasconi, P. and Leisy, D.J. (1994) Purification and characterization of insecticidal toxins from venom glands of the parasitic wasp, Bracon hebetor. Insect Biochem. Mol. Biol, 24, 955–961.CrossRefGoogle Scholar
  81. 81.
    Hayakawa, Y. (1994) Cellular immunosupressive protein in the plasm of a parsitized insect larvae. J. Biol. Chem., 269, 14536–14540.Google Scholar
  82. 82.
    Soldevila, A.I. and Jones, D. (1994) Characterization of a novel protein associated with the parazitation of lepidopeteran hosts by an endoparasitic wasp. Insect Biochem. Mol. Biol., 24, 29–38.CrossRefGoogle Scholar
  83. 83.
    Coudron, T.A. (1996) Endocrinologically active venom proteins of ectoparasitic wasps. Toxicon, 34, p. 302.CrossRefGoogle Scholar
  84. 84.
    Prince, R.C., Gunson, D.E. and Scarpa, A. (1985) Sting like a bee! The ionophoric properties of melittin. Trends in Biochemical Sciences, 10, 99.CrossRefGoogle Scholar
  85. 85.
    Banks, B.E.C. and Shipolini, R.A. Chemistry and pharmacology of honeybee venom. In: Venoms of Hymenoptera (Tom Piek, Ed.) Academic Press, London, 1986, pp. 330–403.Google Scholar
  86. 86.
    Tu, A.T. (Ed.) Handbook of Natural Toxins Vol. 2, Marcel Dekker, Inc., New York, 1984.Google Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Eli Zlotkin
    • 1
  1. 1.Department of Cell and Animal Biology Institute of Life SciencesThe Hebrew University of JerusalemJerusalemIsrael

Personalised recommendations