Spatio-Chromatic Signalling in the Vertebrate Retina

  • Mustafa B. A. Djamgoz
  • Renata Petruv

Abstract

The optical image focussed on the photoreceptor layer of the retina has distributed within it a variety of informative features that represent visual conditions in the surrounding environment. One of these features is colour. In fact, the functional organization of the vertebrate visual system is such that the colour of a given ‘local’ stimulus is not perceived just according to the wavelengths of light reflected from that point but is also influenced by wavelengths emitted from surrounding areas. This spatio-chromatic phenomenon leads to “colour constancy” whereby the colour of an object appears unchanged under different spectral illumination conditions (Land, 1959). Colour constancy has been demonstrated by both psychophysics and electrophysiology in vertebrates as diverse as fish and primates (Zeki, 1980; 1995; Ingle, 1985).

Keywords

Ganglion Cell Receptive Field Bipolar Cell Amacrine Cell Horizontal Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abramov, I. & Levine, M.W. (1972) The effects of carbon dioxide on the excised goldfish retina. Vision Res. 12:1881–1895.PubMedCrossRefGoogle Scholar
  2. Adams, A.J. & Afandor, A.J. (1971) Ganglion cell receptive field organization at different levels of light adaptation, Am. J. Optom. 48:889–894.CrossRefGoogle Scholar
  3. Ashmore, J.F. & Falk, G. (1980) Responses of rod bipolar cells in the dark adapted retina of the dogfish, Scyliorhinus canicula, J. Physiol. 300:115–150.Google Scholar
  4. Barlow, H.B., Fitzhugh, R., & Kuffler, S.W. (1957) Change of organization in the receptive fields of the cat’s retina during dark adaptation, J. Physiol. 137:338–354.PubMedGoogle Scholar
  5. Barnes, S. (1995) Photoreceptor synaptic output: neurotransmitter release and photoreceptor coupling. In Neurobiology and Clinical Aspects of the Outer Retina (Djamgoz M.B. A., Archer, S. and Vallerga, S. eds.). Chapman & Hall, London, pp. 133–153.CrossRefGoogle Scholar
  6. Baldridge, W.H. & Ball, A.K. (1991) Background illumination reduces horizontal cell receptive-field size in both normal and 6-hydroxydopamine lesioned goldfish retinas, Visual Neurosci. 7:441–450.CrossRefGoogle Scholar
  7. Bauer, B. & Ehinger, B. (1980) Action of alpha-MSH on the release of neurotransmitters from the retina, Acta Physiol. Scand. 108:105–107.PubMedCrossRefGoogle Scholar
  8. Baylor, D.A., Fourtes, M.G.F & O’Bryan, P.M. (1971) Receptive field of cones in the retina of the turtle, J. Physiol. 214:65–214.Google Scholar
  9. Beauchamp, R.D. & Daw, N.W. (1972) Rod and cone input to single goldfish optic nerve fibres, Vision Res. 12:1201–1212.PubMedCrossRefGoogle Scholar
  10. Bilotta, J. & Abramov, I. (1989a) Spatial properties of goldfish ganglion cells, J. Gen. Physiol. 93:1147–1169.PubMedCrossRefGoogle Scholar
  11. Bilotta, J. & Abramov, I. (1989b) Spatio-spectral properties of goldfish retinal ganglion cells, J. Neurophysiol. 62:1140–1148.PubMedGoogle Scholar
  12. Bowmaker, J.K. & Kunz, Y.W. (1987) Ultraviolet receptors, tetrachromatic colour vision and retinal mosaics in the brown trout (Salmo trutta): age-dependent changes, Vision Res. 27:2101–2108.PubMedCrossRefGoogle Scholar
  13. Browman, H.I. & Hawryshyn, C.W. (1992) Thyroxine induces a precocial loss of ultraviolet photosensitivity in rainbow trout (Oncorhynchus mykiss), Vision Res. 32:2303–2312.PubMedCrossRefGoogle Scholar
  14. Burkhardt, D.A. (1977) Responses and receptive field organization of cones in perch retina, J. Neurophysiol. 40:53–62.PubMedGoogle Scholar
  15. Burkhardt, D.A., Hassin, G., Levine, J.S. & MacNichol, E.F. Jr. (1980) Electrical responses and photopigments of twin cones in the retina of the walleye, J. Neurophysiol. 309:215–228.Google Scholar
  16. Cajal, S.R. (1893) La retiné des vertébrés. La Cellule 9:17–257.Google Scholar
  17. Cowan, M.W. (1970) Centrifugal fibres to the avian retina, Br. Med. Bull. 26:112–118.Google Scholar
  18. Dacey, D.M. & Lee, B.B. (1994) The ‘blue-on’ opponent pathway in primate retina originates from a distinct bistratified ganglion cell type, Nature 367:731–735.PubMedCrossRefGoogle Scholar
  19. Dacheux, R.F. & Raviola, E. (1986) The rod pathway in the rabbit retina: a depolarizing bipolar and amacrine cell, J. Neurosci. 6:331–345.PubMedGoogle Scholar
  20. Davis, G.W. & Naka, K-I. (1980) Spatial organization of catfish retinal neurons. I. Single-and random-bar stimulation, J. Neurophysiol. 43:807–831.PubMedGoogle Scholar
  21. Davis, R.E., Kyle, A. & Klinger, RD. (1988) Nervus terminalis innervation of the goldfish retina and behavioural visual sensitivity, Neurosci. Lett. 91:126–130.PubMedCrossRefGoogle Scholar
  22. Daw, N.W. (1968) Colour-coded ganglion cells in the goldfish retina. Extension of their receptive fields by means of new stimuli, J. Physiol. 197:567–592.PubMedGoogle Scholar
  23. Daw, N.W. (1973) Neurophysiology of colour vision, Physiol. Rev. 53:571–611.PubMedGoogle Scholar
  24. De Monasterio, F.M. & Gouras, R (1975) Functional properties of ganglion cells of the rhesus monkey retina, J. Physiol. 251:167–195.PubMedGoogle Scholar
  25. DeVries, S.H. & Schwartz, E.A. (1989) Modulation of an electrical synapse between solitary pairs of catfish horizontal cells by dopamine and second messengers, J. Physiol. 44:351–375.Google Scholar
  26. van Dijk, B.W. & Spekreijse, H. (1984) Linear color opponency in carp retinal ganglion cells, Vision Res. 24:1865–1872.PubMedCrossRefGoogle Scholar
  27. Djamgoz M.B.A. & Ruddock K.H. (1978a) Properties of amacrine cell responses recorded from isolated fish retinae, Neurosci. Lett. 7:89–93.PubMedCrossRefGoogle Scholar
  28. Djamgoz, M.B.A. & Ruddock, K.H. (1978b) Changes in structure and electrophysiological function of retinal neurones induced by laser irradiation, Neurosci. Lett. 7:251–256.PubMedCrossRefGoogle Scholar
  29. Djamgoz, M.B.A., Stell, W.K., Chin, C.A. & Lam, D.M.K. (1981) An opiate system in the goldfish retina. Nature 292:620–623.PubMedCrossRefGoogle Scholar
  30. Djamgoz, M.B.A., Spadevecchia, L., Usai, C. & Vallerga, S. (1990) Light-evoked response pattern variability and morphological characterization of amacrine cells in goldfish retina, J. Comp. Neurol. 301:171–190.PubMedCrossRefGoogle Scholar
  31. Djamgoz, M.B.A. & Wagner, H-J. (1992) Localization and function of dopamine in the adult vertebrate retina, Neurochem. Int. 20:139–191.PubMedCrossRefGoogle Scholar
  32. Djamgoz, M.B.A & Yamada, M. (1992) Dopamine and light adaptation sharpen the spectral response of HI horizontal cells in carp retina, Neurosci.Res. Comm. 10:149–153.Google Scholar
  33. Djamgoz, M.B.A., Furukawa, T., Yamada, M. and Yasui, S. (1993) Short-wavelength signal transmission to HI horizontal cells in the isolated carp retina: involvement of APB receptor activated by light adaptation, J. Physiol. 467:353P.Google Scholar
  34. Djamgoz, M.B.A., Wagner, H-J & Witkovsky, P. (1995a) Photoreceptor-horizontal cell connectivity, synaptic transmission and neuromodulation. In Neurobiology and Clinical Aspects of the Outer Retina. (Djamgoz M.B.A., Archer S.N. and Vallerga S. eds.). Chapman & Hall, London, pp. 155–193.CrossRefGoogle Scholar
  35. Djamgoz, M.B.A., Cunningham, J.R., Hutson, P.H., Murray, F. & Neal, M.J. (1995b) Nitric oxide inhibits depolarization-induced release of endogenous dopamine in the rabbit retina. Neurosci. Lett. 198:1–4.CrossRefGoogle Scholar
  36. Dowling, J.E. (1979) Information processing by local circuits: the vertebrate retina as a model system. In The Neurosciences, Fourth Study Program (Schmitt F.O. and Worden F.G. eds.). MIT Press, Cambridge, Mass. pp. 163–181.Google Scholar
  37. Dowling, J.E. (1986) Dopamine: a retinal neuromodulator?, Trends Neurosci. 9:236–240.CrossRefGoogle Scholar
  38. Dowling, J.E. (1989) Neuromodulation in the retina: the role of dopamine, The Neurosciences 1, 35–43.Google Scholar
  39. Downing, J.E.G., Djamgoz, M.B.A. & Bowmaker, J.K. (1986) Photoreceptors of a cyprinid fish, the roach: morphological and spectral characteristics, J. Comp. Physiol. A 159:859–868.CrossRefGoogle Scholar
  40. Downing, J.E.G. and Djamgoz, M.B.A. (1989) Quantitative analysis of cone photoreceptor-horizontal cell connectivity patterns in the retina of a cyprinid fish: electron microscopy of functionally-identified and HRP-labelled horizontal cells, J. Comp. Neurol. 289:537–553.PubMedCrossRefGoogle Scholar
  41. Dubin, M. (1970) The inner plexiform layer of the vertebrate retina: a quantitative and comparative electron microscopic analysis, J. Comp. Neurol. 140, 479–506.PubMedCrossRefGoogle Scholar
  42. Engstrom, A. (1963) Cone types and cone arrangements in teleost retinae, Acta Zool. 42:179–243.CrossRefGoogle Scholar
  43. Enroth-Cugell, C. & Lennie, P. (1975) The control of retinal ganglion cell discharge by receptive field surrounds, J. Physiol. 247:51–578.Google Scholar
  44. Enroth-Cugell, C. & Robson, (1966) The contrast sensitivity of retinal ganglion cells of the cat, J. Physiol. 87:517–552.Google Scholar
  45. Gleason, E., Borges, S. & Wilson, M. (1993) Synaptic transmission between pairs of retinal amacrine cells in culture, J. Neurosci. 13:2359–2370.PubMedGoogle Scholar
  46. Gouras, P. (1971) The function of the midget cell system in primate colour vision, Vision Res. Suppl. 3:397–410.CrossRefGoogle Scholar
  47. Gouras, P. & Zrenner, E. (1981a) Color coding in primate retina, Vision Res. 21:1591–1598.PubMedCrossRefGoogle Scholar
  48. Gouras, P. & Zrenner, E. (1981b) Color vision: a review from a neurophysiological perspective, Prog. Sensory Physiol. 1:139–179.CrossRefGoogle Scholar
  49. Gouras, P. & Eggers, H. (1982) Ganglion cells mediating the signals of blue sensitive cones in primate retina detect white-yellow borders independently of brightness, Vision Res. 22:675–679.PubMedCrossRefGoogle Scholar
  50. Gouras, P. & Eggers, H. (1983) Responses of primate ganglion cells to moving spectral contrast, Vision Res. 23:1175–1182.PubMedCrossRefGoogle Scholar
  51. Greenstreet E.H. (1994) Neuronal connectivity and plasticity in the outer retina of cyprinid fish. PhD Thesis. University of London.Google Scholar
  52. Greenstreet E.H. & Djamgoz M.B.A. (1994a) Nitric oxide induces light-adaptive morphological changes in retinal neurones, NeuroReport 6:109–112.PubMedCrossRefGoogle Scholar
  53. Greenstreet, E.H. & Djamgoz, M.B.A. (1994b) Triphasic chromaticity-type horizontal cells selectively contact short wavelength-sensitive cone photoreceptors in the retina of a cyprinid fish, Rutilus rutilus, Proc. R. Soc. Lond. B 256:227–230.CrossRefGoogle Scholar
  54. Grüsser-Cornhels, U. & Langeveld, S. (1985) Velocity sensitivity and directional selectivity of frog retinal ganglion cells depend on chromaticity of moving stimuli, Brain Behav. Evol. 27:165–185.CrossRefGoogle Scholar
  55. Hampson, E.C.G.M., Vaney, D.I. & Weiler, R. (1992) Dopaminergic modulation of gap junction permeability between amacrine cells in mammalian retina, J. Neurosci. 12:4911–4922.PubMedGoogle Scholar
  56. Hankins, M.W. (1995) Horizontal cell coupling and its regulation. In Neurobiology and Clinical Aspects of the Outer Retina. (Djamgoz M.B.A., Archer S.N. & Vallerga S. eds.). Chapman & Hall, London, pp. 195–220.CrossRefGoogle Scholar
  57. Hedden, W.L. & Dowling, J.E. (1978) The interplexiform cell system. II. Effects of dopamine on goldfish retinal neurones, Proc. R. Soc. Lond. B 201:27–55.PubMedCrossRefGoogle Scholar
  58. Hochstein, S. & Shapley, R.M. (1976) Quantitative analysis of retinal ganglion cell classifications, J. Phvsiol. 262:237–264.Google Scholar
  59. Ingle, D.J. (1985) The goldfish as a retinex animal, Science 227:755–758.CrossRefGoogle Scholar
  60. Kamermans, M., van Dijk, B.W., Spekreijse, H. & Zweypfenning, R.C.V.J. (1989) Lateral feedback from monophasic horizontal cells to cones in carp retina. I. Experiments, J. Gen. Physiol. 93:681–694.PubMedCrossRefGoogle Scholar
  61. Kaneko, A. (1970) Physiological and morphological identification of horizontal, bipolar and amacrine cells of goldfish retina, J. Physiol. 207:623–633.PubMedGoogle Scholar
  62. Kaneko, A. (1973) Receptive field organization of bipolar and amacrine cells in the goldfish retina, J. Physiol. 235:133–153.PubMedGoogle Scholar
  63. Kaneko, A. & Tachibana, M. (1981) Retinal bipolar cells with double colour-opponent receptive fields, Nature 293:220–222.PubMedCrossRefGoogle Scholar
  64. Kaneko, A. & Tachibana, M. (1983) Double colour-opponent receptive fields of carp bipolar cells, Vision Res. 23:381–388.PubMedCrossRefGoogle Scholar
  65. Kaplan, E., Marcus, S. & So, Y.T. (1979) Effects of dark adaptation on spatial and temporal properties of receptive fields in cat lateral geniculate nucleus, J. Physiol. 294:561–580.PubMedGoogle Scholar
  66. Kaplan, E. & Shapley, R.M. (1986) The primate retina contains two types of ganglion cells, with high and low contrast sensitivity, Proc. Natl. Acad. Sci. USA 83:2755–2757.PubMedCrossRefGoogle Scholar
  67. Kolb, H. (1970) Organization of the outer plexiform layer of the primate retina: electron microscopy of Golgi-impregnated cells, Phil. Trans. R. Soc. Lond. B 258:261–283.CrossRefGoogle Scholar
  68. Kraft, T.W. & Burkhardt, D.A. (1986) Telodendrites of cone photoreceptors: Structure and probable function, J. Comp. Neurol. 249:13–27.PubMedCrossRefGoogle Scholar
  69. Land, E.H. (1959) Color vision and the natural image. Parts I and II., Proc. Natl. Acad. Sci. USA 45:115–129 and 636-644.CrossRefGoogle Scholar
  70. Lasater, E.M. (1982) Spatial receptive fields of catfish retinal ganglion cells, J. Neurophysiol. 48:823–835.PubMedGoogle Scholar
  71. Lasater, E.M. & Lam, D.M.K. (1984a) The identification and some functions of GABAergic neurones in the distal catfish retina., Vision Res. 24:497–506.PubMedCrossRefGoogle Scholar
  72. Lasater, E.M. & Lam, D.M.K. (1984b) The identification and some functions of GABAergic neurones in the proximal retina of the catfish, Vision Res. 24:875–881.PubMedCrossRefGoogle Scholar
  73. Levine, M.W. & Shefner, J.M. (1979) X-like and not X-like cells in goldfish retina, Vision Res. 19:95–97.PubMedCrossRefGoogle Scholar
  74. Levine, J.S. & MacNichol, E.F. Jr. (1982) Color vision in fishes, Sci. Am. 246:108–117.Google Scholar
  75. Lipetz, L.E. & Kaneko, A. (1984) Receptive field properties of the photopic luminosity horizontal cell of carp retina, Vision Res. 24:1947–1950.PubMedCrossRefGoogle Scholar
  76. Loew, E.R. & McFarland, W.N. (1990) The underwater environment. In The Visual System of Fish (Douglas R.H. & Djamgoz M.B.A. eds.). Chapman & Hall, London, pp. 1–43.CrossRefGoogle Scholar
  77. Lyall, A.H. (1957) Cone arrangement in teleost retinae, Q. J. Microsc. Sci. 98:189–201.Google Scholar
  78. Mackintosh, R.M., Bilotta, J. & Abramov, I. (1987) Contributions of short-wavelength cones to goldfish ganglion cells, J. Comp. Physiol. A 161:85–94.CrossRefGoogle Scholar
  79. Mangel, S.C. (1991) Analysis of the horizontal cell contributionto the receptive field surround of ganglion cells in the rabbit retina, J. Physiol. 442:211–234.PubMedGoogle Scholar
  80. Mangel, S.C. & Dowling, J.E. (1985) Responsiveness of receptive field size of carp horizontal cells are reduced by prolonged darkness and dopamine, Science 229:1107–1109.PubMedCrossRefGoogle Scholar
  81. Marchiafava, RL. (1985) Cell coupling in double cones of the fish retina, Proc. R. Soc. Lond. B 226:211–215.CrossRefGoogle Scholar
  82. Marchiafava, RL., Strettoi, E. & Alpigiani, V. (1985) Intracellular recording from single and double cone cells isolated from the fish retina (Tinea tinea). Exp. Biol. 44:173–180.PubMedGoogle Scholar
  83. Miller, J.L. & Karenbrot, J.I. (1993) Phototransduction and adaptation in rods, single cones and twin cones of the striped bass retina: a comparative study, Visual Neurosci. 10:653–667.CrossRefGoogle Scholar
  84. Mitarai, G., Goto, T. & Takagi, S. (1978) Receptive field arrangement of colour-opponent bipolar and amacrine cells in the carp retina. Sensory Processes 2:375–382.PubMedGoogle Scholar
  85. Miyachi, E-I., Murakami, M. & Nakaki, T. (1990) Arginine blocks gap junctions between retinal horizontal cells, NeuroReport 1:107–110.PubMedCrossRefGoogle Scholar
  86. Miyachi, E-I. & Nishikawa, C. (1994) Blocking effect of L-arginine on retinal gap junctions by activating guanylate cyclase via generation of nitric oxide, Biogen. Amines 10:459–464.Google Scholar
  87. Murakami, M. & Shimoda, Y. (1977) Identification of amacrine and ganglion cells in the carp retina. J. Physiol. 265:801–818.Google Scholar
  88. Naka, K-I. (1977) Functional organization of catfish retina, J. Neurophysiol. 36:502–518.Google Scholar
  89. Naka, K-I. & Ohtsuka, T. (1975) Morphological and functional identifications of catfish retinal neurons. II. Morphological identification., J. Neurophysiol. 38:72–91.PubMedGoogle Scholar
  90. Naka, K-I., Marmarelis, P.X. & Chan, R.Y. (1975) Morphological and functional identifications of catfish retinal neurons. III. Functional identification, J. Neurophysiol. 38:92–131.PubMedGoogle Scholar
  91. Naka, K-I. & Christensen, B.N. (1981) Direct electrical connections between transient amacrine cells in the catfish retina, Science 214:462–464.PubMedCrossRefGoogle Scholar
  92. Neal, M.J. (1984) Cholinergic mechanisms in the vertebrate retina, Prog. Retinal Res. 2:191–212.CrossRefGoogle Scholar
  93. Nelson, R. & Kolb, H. (1983) Synaptic patterns and response properties of bipolar and ganglion cells in the cat retina. Vision Res. 23:1183–1195.PubMedCrossRefGoogle Scholar
  94. Neumeyer, C. & Arnold, K. (1989) Tetrachromatic colour vision in the goldfish becomes trichromatic under white adaptation light of moderate intensity, Vision Res. 29:1719–1727.PubMedCrossRefGoogle Scholar
  95. Normann, R.A., Perlman, I., Kolb, H., Jones, J. & Daly, S.J. (1984) Direct excitatory interactions between cones of different spectral types in the turtle retina, Science 224:625–627.PubMedCrossRefGoogle Scholar
  96. Ohtsuka, T. & Kawamata, K. (1990) Telodendrinal contact of HRP-filled photoreceptors in the turtle retina: pathways of photoreceptor coupling, J. Comp. Neurol. 292:599–613.PubMedCrossRefGoogle Scholar
  97. Perry, V.H., Oehler, R. & Cowey, A. (1984) Retinal ganglion cells that project to the dorsal lateral geniculate nucleus in the macaque monkey, Neurosci. 12:1101–1123.CrossRefGoogle Scholar
  98. Petruv, R., Furukawa, T., Yasui, S. & Djamgoz, M.B.A. (1993) Sodium nitroprusside, a nitric oxide donor, generates chromatic difference in the receptive field size of HI horizontal cells in isolated retinae of carp, J. Physiol. 473:163P.Google Scholar
  99. Piccolino, J., Neyton, J. & Gerschenfeld, H.M. (1984) Decrease of gap junction permeability induced by dopamine and cyclic adenosine d’:5’-monophosphate in horizontal cells of turtle retina, J. Neurosci. 4:2477–2488.PubMedGoogle Scholar
  100. Raynauld, J.P., Laviolette, J.R. & Wagner, H-J. (1979) Goldfish retina: a correlate between cone activity and morphology of the horizontal cell in cone pedicules, Science 204:1436–1438.PubMedCrossRefGoogle Scholar
  101. Richter, A. & Simon, E.J. (1975) Properties of centre-hyperpolarizing, red-sensitive bipolar cells in the turtle retina, J. Physiol. 248:317–334.PubMedGoogle Scholar
  102. Saito, T. & Kujiraoka, T. (1982) Physiological and morphological identification of two types of on-centre bipolar cells in the carp retina, J. Comp. Neurol. 205:161–170.PubMedCrossRefGoogle Scholar
  103. Saito, T. & Kujiraoka, T. (1988) Characteristics of bipolar-bipolar coupling in the carp retina, J. Gen. Physiol. 91:275–287.PubMedCrossRefGoogle Scholar
  104. Sakai, H.M. & Naka, K-I. (1986) Synaptic organization of the cone horizontal cells in the catfish retina., J. Comp. Neurol. 245:107–115.PubMedCrossRefGoogle Scholar
  105. Sakai H.M. & Naka K-I. (1987) Signal transmission in the catfish retina. IV. Transmission to ganglion cells, J. Neurophysiol. 58:1307–1328.PubMedGoogle Scholar
  106. Schellart, N.A.M., van Acker, H.F. & Spekreijse, H. (1984) Influence of GAB A and the spectral and spatial coding of goldfish retinal ganglion cells, Neurosci. Lett. 48:31–36.PubMedCrossRefGoogle Scholar
  107. Scholes, J.H. (1975) Colour receptors and their synaptic connections, in the retina of a cyprinid fish, Phil. Trans. R. Soc. Lond. B 270:61–118.CrossRefGoogle Scholar
  108. Schultze, M. (1866) Zur anatomie und physioloigie der retina, Arch. Mikr. Anat. 2:175–286.CrossRefGoogle Scholar
  109. Schwartz, E.A. (1974) Responses of bipolar cells in the retina of the turtle, J. Physiol. 236:211–224.PubMedGoogle Scholar
  110. Shigematsu, Y. & Yamada, M. (1988) Effects of dopamine on spatial properties of horizontal cell responses in the carp retina, Neurosci. Res. Suppl. 8: S69–S80.PubMedCrossRefGoogle Scholar
  111. Spekreijse, H., Wagner, H.G. & Wolbarsht, M.L. (1972) Spectral and spatial coding of ganglion cell responses in goldfish retina. J. Neurophysiol. 35:73–86.PubMedGoogle Scholar
  112. Spekreijse, H., Wietsma, J.J. & Neumeyer, C. (1991) Induced color blindness in goldfish: a behavioral and electrophysiological study. Vision Res. 31:551–562.PubMedCrossRefGoogle Scholar
  113. Sperling H.G. (1986) Spectral sensitivity, intense spectral light studies and the colour receptor mosaic of primates. Vision Res. 26:1557–1571.PubMedCrossRefGoogle Scholar
  114. Stell W.K. (1980) Photoreceptor-specific synaptic pathways in goldfish retina: a world of colour, a wealth of connections. In Colour Vision Deficiencies V (Verriest, G. ed.). Adam Hilger, Bristol, pp. 1–14.Google Scholar
  115. Stell, W.K. & Harosi, F.I. (1976) Cone structure and visual pigment content in the retina of goldfish, Vision Res. 16:647–657.PubMedCrossRefGoogle Scholar
  116. Stell, W.K., Lightfoot, D.O., Wheeler, T.G & Leeper, H.F. (1975) Goldfish retina; functional polarization of cone horizontal cell dendrites and synapses, Science 190:989–990.PubMedCrossRefGoogle Scholar
  117. Stell, W.K., Walker, S.E. & Ball, A.K. (1987) Functional-anatomical studies on the terminal nerve projection to the retina of bony fishes, Ann. N. Y. Acad. Sci. 519:80–96.PubMedCrossRefGoogle Scholar
  118. Teranishi, T. & Negishi, K. (1994) Double-staining of horizontal and amacrine cells by intracellular injection with lucifer yellow and biocytin in carp retina, Neurosci. 59:217–266.CrossRefGoogle Scholar
  119. Teranishi, T., Kato, S. & Negishi, K. (1982) Lateral spread of S-potential components in the carp retina, Exp. Eye Res. 34:389–399.PubMedCrossRefGoogle Scholar
  120. Thier, P. & Alder, V. (1984) Action of iontophoretically applied dopamine on cat retinal ganglion cells., Brain Res. 292 109–121.PubMedCrossRefGoogle Scholar
  121. Thorell L.G., De Valois R.L. & Albrecht D.G. (1984) Spatial mapping of monkey VI cells with pure colour and luminance stimuli, Vision Res. 24:751–769.PubMedCrossRefGoogle Scholar
  122. Toyoda, J-I., Hashimoto, H. & Ohtsu, K. (1973) Bipolar-amacrine transmission in the carp retina, Vision Res. 13:295–307.PubMedCrossRefGoogle Scholar
  123. Toyoda, J-I. & Fujimoto, M. (1983) Analyses of neural mechanisms mediating the effect of horizontal cell polarization., Vision Res. 23:1143–1150.PubMedCrossRefGoogle Scholar
  124. Toyoda, J-I. & Tonosaki, K. (1978) Effect of polarization of horizontal cells on the on-center bipolar cell of carp retina, Nature 276:399–400.PubMedCrossRefGoogle Scholar
  125. Umino, O., Lee, Y.L. & Dowling, J.E. (1991) Effects of light stimuli on the release of dopamine from interplexiform cells in the white perch retina, Visual Neurosci. 7:451–458.CrossRefGoogle Scholar
  126. Wagner, H-J. (1990) Retinal structure of fishes. In The Visual System of Fish. (Douglas R.H. & Djamgoz M.B.A. eds.). Chapman & Hall, London, pp. 109–157.CrossRefGoogle Scholar
  127. Wagner, H.G., MacNichol, E.F. Jr. & Wolbarsht, M.L. (1960) The response properties of single ganglion cells in the goldfish retina, J. Gen. Physiol. 43:43–62.CrossRefGoogle Scholar
  128. Wagner, H.G., MacNichol, E.F. Jr. & Wolbarsht, M.L. (1963) Functional basis for ‘on’-centre and ‘off.’-centre receptive fields in the retina, J. Opt. Soc. Am. 53:66–70.PubMedCrossRefGoogle Scholar
  129. Wagner, H-J. & Djamgoz, M.B.A. (1993) Spinules: a case for retinal synaptic plasticity, Trends Neurosci. 16:201–206.PubMedCrossRefGoogle Scholar
  130. Warner, A.E. & Lawrence, P. (1982) Permeability of gap junctions at the segmental border in insect epidermis, Cell 28:243–252.PubMedCrossRefGoogle Scholar
  131. Wassle, H. & Boycott, B.B. (1991) Functional architecture of the mammalian retina, Physiol. Rev. 11:447–480.Google Scholar
  132. Werblin, F.S. (1974) Control of retina sensitivity. II. Lateral interactions at the outer plexiform layer, J. Gen. Physiol. 63:62–87.PubMedCrossRefGoogle Scholar
  133. Werblin, F.S. & Dowling, J.E. (1969) Organization of the retina of the mudpuppy, Necturus maculosus. II. Intracellular recording, J. Neurophysiol. 32:339–355.Google Scholar
  134. Wietsma, J.J. & Spekreijse, H. (1991) Bicuculline produces reversible red-green color blindness in goldfish, as revealed by monocular behavioral testing., Vision Res. 31:2101–2107.PubMedCrossRefGoogle Scholar
  135. Witkovsky, P. & Dowling, J.E. (1969) Synaptic relationships of the plexiform layers of carp retina, Z. Zellforsch. Mikrosk. Anat. 100:60–82.PubMedCrossRefGoogle Scholar
  136. Witkovsky, P., Shakib, M. & Ripps, H. (1974) Interreceptoral junctions in the teleost retina, Invest. Ophthalmol. Visual Sci. 13:996–1009.Google Scholar
  137. Witkovsky, P. & Stone, S. (1983) Rod and cone inputs to bipolar and horizontal cells of the Xenopus retina, Vision Res. 23:1251–1258.PubMedCrossRefGoogle Scholar
  138. Witkovsky, P. & Dearry, A. (1991) Functional roles of dopamine in the vertebrate retina, Prog. Retinal Res. 11:247–292.CrossRefGoogle Scholar
  139. Yamada, M. & Saito, T. (1988) Effects of dopamine on bipolar cells in the carp retina, Biomed. Res. 9, Suppl. 2:125–130.Google Scholar
  140. Yamada, M., Djamgoz, M.B.A., Low, J.C., Furukawa, T. & Yasui, S.(1991) Conductance decreasing cone-output to HI horizontal cells in carp retina, Neurosci. Res. Suppl 15: S51–S65.PubMedGoogle Scholar
  141. Yasui, S., Yamada, M. & Djamgoz, M.B.A. (1990) Dopamine and 2-amino-4-phosphonobutyrate differentially affect spectral responses of HI horizontal cells in carp retina, Exp. Brain Res. 83:79–84.PubMedCrossRefGoogle Scholar
  142. Yazulla, S. (1976) Cone input to bipolar cells in the turtle retina, Vision Res. 16:737–744.PubMedCrossRefGoogle Scholar
  143. Zeki, S. (1980) The representation of colours in the cerebral cortex, Nature 284:412–418.PubMedCrossRefGoogle Scholar
  144. Zeki, S. (1995) Behind the scene: An exploration of the visual brain (Ferrier Lecture), Proc.R. Soc. Lond. B. (In press).Google Scholar
  145. Zrenner, E. & Gouras, P. (1983) Cone opponency in tonic ganglion cells and its variation with eccentricity in rhesus monkey retina. In Colour Vision: Physiology and Psychophysics (Mollon J.D. and Sharpe L.T. eds). Academic Press, London, pp. 211–223.Google Scholar
  146. Zucker, C.L. & Dowling, J.E. (1987) Centrifugal fibers synapse on dopaminergic interplexiform cells in the teleost retina, Nature 330:166–168.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Mustafa B. A. Djamgoz
    • 1
  • Renata Petruv
    • 1
  1. 1.Neurobiology Group, Biology DepartmentImperial College of Science, Technology and MedicineLondonUK

Personalised recommendations