The Architecture of Functional Neural Circuits in the Cat Retina

  • Helga Kolb

Abstract

The cat retina has been a model retina for anatomical, physiological and pharmacological studies to elucidate its functional organization for at least a quarter of a century now. Over most of this time Hisako Ikeda has been at the forefront of research on ganglion cell function in this retina in both normal, abnormal and developmental conditions. Thus, it is fitting that in this paper which is to be amongst contributions from colleagues and friends of Hisako Ikeda I describe my research on the anatomical organization of the cat retina. This research fits very well with her physiological findings and represents our mutual interests in understanding how cat ganglion cell receptive fields are organized.

Keywords

Ganglion Cell Bipolar Cell Amacrine Cell Horizontal Cell Inner Plexiform Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baylor, D. A., M. G. F. Fuortes, and P. M. O’Bryan (1971) Receptive fields of the cones in the retina of the turtle, J. Physiol., Lond. 214:265–294.PubMedGoogle Scholar
  2. Bortoff, A. (1964) Localization of slow potential responses in the Necturus retina, Vision Res. 4:627–635.PubMedCrossRefGoogle Scholar
  3. Boycott, B. B. and Kolb, H. (1973a) The horizontal cells of the rhesus monkey retina, J. Comp. Neurol. 148:115–140.PubMedCrossRefGoogle Scholar
  4. Boycott, B. B. and Kolb, H. (1973) The connection between the bipolar cells and photoreceptors in the retina of the domestic cat, J. Comp. Neurol. 148:91–114.PubMedCrossRefGoogle Scholar
  5. Boycott, B. B. and Wassle, H. (1974) The morphological types of ganglion cells of the domestic cat’s retina, J. Physiol. 240:397–419.PubMedGoogle Scholar
  6. Cajal, S. R. (1892) The Structure of the Retina. Translated by S.A. Thorpe and M. Glickstein (Springfield, II., Thomas), 1972.Google Scholar
  7. Cohen, E. and Sterling, R (1990a) Demonstration of cell types among cone bipolar neurons of cat retina, Phil. Trans. R. Soc. B 330:305–322.PubMedCrossRefGoogle Scholar
  8. Cohen, E. and Sterling, R (1990b) Convergence and divergence of cones onto bipolar cells in the central area of cat retina, Phil. Trans. R. Soc., B 330:323–328.CrossRefGoogle Scholar
  9. Cohen, E. and Sterling, R (1991) Microcircuitry related to the receptive-field center of the ON-beta ganglion cell, J. Neurophysiol. 65:352–359.PubMedGoogle Scholar
  10. Dacheux, R. F. and Raviola, E. (1986) The rod pathway in the rabbit: a depolarizing bipolar and amacrine cell, J. Neurosci. 6:331–345.PubMedGoogle Scholar
  11. Djamgoz, M. B. A. and Kolb, H. (1993) Ultrastructural and functional connectivity of intracellularly stained neurones in the vertebrate retina: Correlative analyses, Micr. Res. & Tech. 24:43–66.CrossRefGoogle Scholar
  12. Dowling, J. E. (1987) The Retina: an approachable part of the brain. The Belknap Press, Harvard University Press, Cambridge, Massachusetts.Google Scholar
  13. Dowling, J. E., and Boycott, B.B. (1966) Organization of the primate retina; electron microscopy, Proc. R. Soc. B 166:80–111.CrossRefGoogle Scholar
  14. Enroth-Cugell, C. and Robson, J.G. (1966) The contrast sensitivity of retinal ganglion cells of the cat, J. Physiol. 187:517–552.PubMedGoogle Scholar
  15. Famiglietti, E. V. (1983) ’Starburst’ amacrine cells and cholinergic neurons: mirror-symmetric ON and OFF amacrine cells of rabbit retina, Brain Res. 261:138–144.PubMedCrossRefGoogle Scholar
  16. Famiglietti, E. V. and Kolb, H. (1975) A bistratified amacrine cell and synaptic circuitry in the inner plexiform layer of the retina, Brain Res. 84:293–300.PubMedCrossRefGoogle Scholar
  17. Famiglietti, E. V. and Kolb, H. (1976) Structural basis for ON-and OFF-center responses in retinal ganglion cells, Science 194:193–195.PubMedCrossRefGoogle Scholar
  18. Freed, M. A. and Sterling, P. (1988) The ON-alpha ganglion cell of the cat retina and its presynaptic cell types, J. Neurosci. 8:2303–2320.PubMedGoogle Scholar
  19. Gouras, P. (1971) The function of the midget system in primate color vision, Vision Res. Suppl. 3:397–410.CrossRefGoogle Scholar
  20. Ikeda, H. and Wright, M.J. (1972) Receptive field organization of’ sustained’ and ‘transient’ retinal ganglion cells which subserve different functional roles, J. Physiol. 227:769–800.PubMedGoogle Scholar
  21. Kaneko, A. (1970) Physiological and morphological identification of horizontal, bipolar and amacrine cells in goldfish retina, J. Physiol 207:623–633.PubMedGoogle Scholar
  22. Kidd, M. (1962) Electron microscopy of the inner plexiform layer of the retina in the cat and the pigeon, J. Anat. 96:179–187.PubMedGoogle Scholar
  23. Kolb, H. (1970) Organization of the outer plexiform layer of the primate retina: electron microscopy of Golgi-impregnated cells, Phil. Trans. R. Soc. B 258:261–283.PubMedCrossRefGoogle Scholar
  24. Kolb, H. (1974) The connexions between horizontal cells and photoreceptors in the retina of the cat: electron microscopy of Golgi-preparations, J. Comp. Neurol. 155:1–14.PubMedCrossRefGoogle Scholar
  25. Kolb, H. (1979) The inner plexiform layer in the retina of the cat: electron microscopic observations, J. Neurocytol. 8:295–329.PubMedCrossRefGoogle Scholar
  26. Kolb, H. (1984) Cone pathways in the mammalian retina. In “Molecular and Cellular Basis of Visual Acuity” (Eds. Hilfer, S.R. and Sheffield, J.B.), Springer-Verlag, New York Inc., pp. 56–78.Google Scholar
  27. Kolb, H., N. Cuenca, Wang, H.H. and DeKorver, L. (1990) The synaptic organization of the dopaminergic amacrine cell in the cat retina., J. Neurocytol. 19:343–366.PubMedCrossRefGoogle Scholar
  28. Kolb, H. and Famiglietti, E.V. (1974) Rod and cone pathways in the inner plexiform layer of the cat retina, Science 186:47–49.PubMedCrossRefGoogle Scholar
  29. Kolb, H. and Famiglietti, E.V. (1976) Rod and cone pathways in the retina of the cat, Invest. Ophthal. 15:935–946.Google Scholar
  30. Kolb, H. and Nelson, R. (1983) Rod pathways in the retina of the cat, Vision Res. 23:301–312.PubMedCrossRefGoogle Scholar
  31. Kolb, H. and Nelson, R. (1984) Neural architecture of the cat retina, Prog. Ret. Res. 3:21–60.CrossRefGoogle Scholar
  32. Kolb, H. and Nelson, R. (1985) Functional neurocircuitry of amacrine cells in the cat retina. In “Neurocuitry of the Retina: a Cajal Memorial” (Eds. Gallego, A. and Gouras, P.), Elsevier Press, New York, pp. 215–232.Google Scholar
  33. Kolb, H. and Nelson, R. (1993) Off-alpha and off-beta ganglion cells in the cat retina. II. Neural circuitry as revealed by electron microscopy of HRP stains, J. Comp. Neurol. 329:85–110.PubMedCrossRefGoogle Scholar
  34. Kolb, H., Nelson, R., and Mariani, A. (1981) Amacrine cells, bipolar cells and ganglion cells of the cat retina: A Golgi study, Vision Res. 21:1081–1114.PubMedCrossRefGoogle Scholar
  35. Kolb, H., Pflüg, R., DeKorver, L. and Nelson, R. (1993) Synaptic organization of hyperpolarizing amacrine cell A13, Invest. Ophthal. Vis. Science (Suppl.) 34: p 1153Google Scholar
  36. Kolb, H. and West, R.W. (1977) Synaptic connections of the interplexiform cell in the retina of the cat. J. Neurocytol. 6:155–170.PubMedCrossRefGoogle Scholar
  37. Lasansky, A. (1978) Contacts between receptors and electrophysiologically identified neurones in the retina of the larval tiger salamander, J. Physiol 285:531–542.PubMedGoogle Scholar
  38. Marc, R. E. Liu, W-L. S. and Muller, J.F. (1988) Multiple GABA-mediated surround channels in goldfish retina, Suppl. Invest. Ophthal. Vis. Sci. 29: p. 272.Google Scholar
  39. Mariani, A.R (1981) A diffuse, invaginating cone bipolar cell in primate retina, J. Comp. Neurol. 197:661–671.PubMedCrossRefGoogle Scholar
  40. Mariani, A. R (1983) Giant bistratified bipolar cells in the monkey retina, Anat. Rec. 206:215–220.CrossRefGoogle Scholar
  41. Mariani, A. R (1984) Bipolar cells in monkey retina selective for cones likely to be blue-sensitive, Nature 308:184–186.PubMedCrossRefGoogle Scholar
  42. Massey, S. C. (1990) Cell types using glutamate as a neurotransmitter in the vertebrate retina, Prog. Ret. Res. 9:399–425.CrossRefGoogle Scholar
  43. McGuire, B. A., Stevens, J.K. and Sterling, R (1984) Microcircuitry of bipolar cells in cat retina, J. Neurosci. 4:2920–2938.PubMedGoogle Scholar
  44. McGuire, B.A., Stevens, J.K. and Sterling, R (1986) Microcircuitry of Beta ganglion cells in cat retina, J. Neurosci. 6:907–918.PubMedGoogle Scholar
  45. Missotten, L. (1965) The ultrastructure of the human retina. Arscia Uitgaven N.V., Brussel.Google Scholar
  46. Naka, K.-I. (1976) Neuronal circuitry in the catfish retina, Invest. Ophthal. 15:926–935.Google Scholar
  47. Nelson, R. (1982) All amacrine cells quicken the time course of rod signals in the cat retina, J. Neurophysiol. 47:928–947.PubMedGoogle Scholar
  48. Nelson, R., Famiglietti, E.V. and. Kolb, H. (1978) Intracellular staining reveals different levels of stratification for on-center and off-center ganglion cells in the cat retina, J. Neurophysiol. 41:427–483.Google Scholar
  49. Nelson, R. and Kolb, H. (1983) Synaptic patterns and response properties of bipolar and ganglion cells in the cat retina, Vision Res. 23:1183–1195.PubMedCrossRefGoogle Scholar
  50. Nelson, R., and Kolb, H. (1985) A17: a broad-field amacrine cell of the rod system in the retina of the cat, J. Neurophysiol. 54:592–614PubMedGoogle Scholar
  51. Ogden, T. E. (1974) The morphology of retinal neurons of the owl monkey, Aotes, J. Comp. Neurol. 153:399–428.PubMedCrossRefGoogle Scholar
  52. Pourcho, R. G. (1982) Dopaminergic amacrine cells in the cat retina, Brain Res. 252:101–109.PubMedCrossRefGoogle Scholar
  53. Pourcho, R. G. and Goebel, D.J. (1983) Neuronal subpopulations in cat retina which accumulate the GABA agonist (3H)muscimol: a combined Golgi and autoradiographic study, J. Comp. Neurol. 219:25–35.PubMedCrossRefGoogle Scholar
  54. Raviola, E. and Gilula, N.B. (1975) Intramembrane organization of specialized contacts in the outer plexiform layer of the retina: A freeze-fracture study in monkeys and rabbits, J. Cell Biol 65:192–222.PubMedCrossRefGoogle Scholar
  55. Rodieck, R. W. (1973) The Vertebrate Retina: principles of structure and function. W.H. Freeman and Company, San Francisco.Google Scholar
  56. Shapley, R. and Perry, V.H. (1986) Cat and monkey retinal ganglion cells and their visual functional roles, Trends Neurosci. 9:229–235.CrossRefGoogle Scholar
  57. Slaughter, M. M. and Miller, R.F. (1981) 2-amino-4-phosphonobutyric acid: A new pharmacological tool for retina research, Science 211:182–184.PubMedCrossRefGoogle Scholar
  58. Slaughter, M. M. and Miller, R.F. (1983) An excitatory amino acid antagonist blocks cone input to sign-conserving second-order retinal neurons, Science 219:1230–1232.PubMedCrossRefGoogle Scholar
  59. Stell, W. K. (1967) The structure and relationships of horizontal cells and photoreceptor-bipolar synaptic complexes in goldfish retina, Amer. J. Anat. 121:401–424.PubMedCrossRefGoogle Scholar
  60. Stell, W. K. and Lightfoot, D.O. (1975) Color-specific interconnections of cones and horizontal cells in the retina of the goldfish, J. Comp. Neurol. 159:473–501.PubMedCrossRefGoogle Scholar
  61. Stell, W. K., Lightfoot, D.O., Wheeler, T.G. and Leeper, H.F. (1975) Goldfish retina: Functional polarization of cone horizontal cell dendrites and synapses, Science 190:989–990.PubMedCrossRefGoogle Scholar
  62. Stell, W. K. and Witkovsky, P. (1973) Retinal structure in the smooth dogfish, Mustelus canis: light microscopy of photoreceptor and horizontal cells, J. Comp. Neurol. 148:33–46.PubMedCrossRefGoogle Scholar
  63. Sterling, P. (1983) Microcircuitry of the cat retina, Ann. Rev. Neurosci. 6:149–185.PubMedCrossRefGoogle Scholar
  64. Sterling, P., Cohen, E., Freed, M.A. and Smith, R.G. (1987) Microcircuitry of the ON-beta ganglion cell in daylight, twilight, and starlight, Neurosci. Res. Suppl. 6: S269–S285.PubMedCrossRefGoogle Scholar
  65. Sterling, P., Freed, M.A. and Smith, R.G. (1988) Architecture of rod and cone circuits to the On-beta ganglion cell, J. Neurosci. 8:623–642.PubMedGoogle Scholar
  66. Svaetichin, G. and MacNichol, E.F. Jr. (1958) Retinal mechanisms for chromatic and achromatic vision, Ann. NY. Acad. Sci. 74:385–404.CrossRefGoogle Scholar
  67. Tomita, T. (1965) Electrophysiological study of the mechanism subserving color coding in the fish retina, Cold Spring Harbor Symp. Quant. Biol. 30:559–566.PubMedCrossRefGoogle Scholar
  68. Toyoda, J.-I. (1972) Membrane resistance changes underlying the bipolar cell response in the carp retina, Vision Res. 12:283–294.Google Scholar
  69. Wassle, H., Grunert, U., Rohrenbeck, J. and Boycott B.B. (1989) Cortical magnification factor and the ganglion cell density of the primate retina, Nature 341:643–646.PubMedCrossRefGoogle Scholar
  70. Werblin, F. S. and Dowling, J.E. (1969) Organization of the retina of the mudpuppy, Necturus maculosus. II. Intracellular recording, J. Neurophysiol. 32:339–355.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Helga Kolb
    • 1
  1. 1.University of Utah Departments of Ophthalmology and Physiology and John A. Moran Eye CentreUniversity of Utah Health Sciences CenterSalt Lake CityUSA

Personalised recommendations