Regulation of the Morphogenetic Cycle of Escherichia coli: 1992

  • William D. Donachie
Part of the Federation of European Microbiological Societies Symposium Series book series (FEMS, volume 65)

Abstract

In exponentially increasing populations, the individual rod-shaped cells of E. coli grow by continuous elongation (without significant change in diameter) and divide by the formation of a centrally placed septum after each successive doubling in length and volume. Many of the genes and proteins which are specifically required for this morphogenetic cycle are now known (see Table) but the way in which their activities are regulated remains largely unknown. What follows is a brief synopsis of the present picture. (Only a few more recent and key references are given; earlier references can be obtained from recent reviews, e.g. Matsuhashi et al. 1990, Donachie & Begg 1990.)

Keywords

EnvA Protein Chromosome Replication Septum Formation Alanine Racemase FtsZ Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aldea, M., Hernandez-Chico, C., de la Campa, A.G., Kushner, S.R. and Vicente, M. (1988) Identification, cloning and expression of bolA, an ftsZ-dependent morphogene of Escherichia coli. J. Bacteriol. 170, 5169–5176.PubMedGoogle Scholar
  2. Aldea, M., Garrido, T., Hernandez-Chico, C., Vicente, M. and Kushner, S.R. (1989) Induction of growth-phase-dependent promoter triggers transcription of bolA, an E. coli morphogene. EMBO J 8, 3 92 3–3 931.Google Scholar
  3. Aldea, M., Garrido, T., Pia, J. and Vicente, M. (1990) Division genes in Escherichia coli are expressed coordinately to cell septum requirements by gearbox promoters. EMBO J 9, 3787–3794.PubMedGoogle Scholar
  4. Begg, K.J., Takasuga, A., Edwards, D.H., Dewar, S.J., Spratt, B.G., Adachi, H., Ohta, T., Matsuzawa, H. and Donachie, W.D. (1990) The balance between different peptidoglycan precursors determines whether E. coli cells will elongate or divide. J. Bacteriol. 172, 6697–6703.PubMedGoogle Scholar
  5. Begg, K.J. and Donachie, W.D. (1991) Experiments on chromosome separation and positioning in Escherichia coli. New Biol. 3, 1–11.Google Scholar
  6. Bi, E. and Lutkenhaus, J.F. (1991) FtsZ ring structure associated with cell division in Escherichia coli. Nature 354, 161–164.PubMedCrossRefGoogle Scholar
  7. Blakely, G., Colloms, S., May, G., Burke, M. and Sherratt, D. (1991) Escherichia coli XerC recombinase is required for chromosomal segregation at cell division. New Biol. 3, 789–798.PubMedGoogle Scholar
  8. Carson, M.J., Barondess, J. and Beckwith, J. (1991) The FtsQ protein of Escherichia coli: membrane topology, abundance and cell division phenotypes due to overproduction and insertion mutations. J. Bacteriol. 173, 2187–2195.PubMedGoogle Scholar
  9. Clerget, M. (1991) Site-specific recombination promoted by a short DNA segment of plasmid Rl and by a homologous segment in the terminus region of the Escherichia coli chromosome. New Biol. 3, 780–788.PubMedGoogle Scholar
  10. de Boer, P.A.J., Crossley, R.E. and Rothfield, L.I. (1989) A division inhibitor and a topological specificity factor coded for by the minicell locus determine proper placement of the division septum in E. coli. Cell 56, 641–649.PubMedCrossRefGoogle Scholar
  11. Dewar, S.J., Kagan-Zur, V., Begg, K.J. and Donachie, W.D. (1989) Transcriptional regulation of cell division genes in Escherichia coli. Mol. Microbiol. 3, 1371–1377.PubMedCrossRefGoogle Scholar
  12. Donachie, W.D., Begg, K.J. (1989) Chromosome partition in Escherichia coli requires post-replication protein synthesis. J. Bacteriol. 171, 5405–5409.PubMedGoogle Scholar
  13. Donachie, W.D., Begg, K.J. (1990) Genes and the replication cycle of Escherichia coli. Res. Microbiol. 141, 64–75.PubMedCrossRefGoogle Scholar
  14. Donachie, W.D., Begg, K.J. and Sullivan, N.F. (1984) The morphogenes of E. coli. In “Microbial Development”, ed. Losick, R. and Shapiro, L. Cold Spring Harbor Laboratory, NY, USA.Google Scholar
  15. Kawamukai, M., Matsuda, H., Fujii, W., Utsumi, R. and Komano, T. (1989) Nucleotide sequence of fic and fic-1 genes involved in cell filamentation induced by cAMP in Escherichia coli. J. Bacteriol. 171, 4525–4529.PubMedGoogle Scholar
  16. Kuempel, P.L., Henson, J.M., Dircks, L., Tecklenburg, M. and Lim, D.F. (1991) dif, a recA-independent recombination site in the terminus region of the chromosome of Escherichia coli. New Biol. 3, 799–811.PubMedGoogle Scholar
  17. Lange, R. and Hengge-Aronis, R. (1991) Growth phase-regulated expression of bolA and morphology of stationary-phase Escherichia coli cells are controlled by the novel sigma factor σS. J. Bacteriol. 173, 4474–4481.PubMedGoogle Scholar
  18. Markiewicz, Z., Broome-Smith, J., Schwarz, U. and Spratt, B.G. (1982) Spherical E. coli due to elevated levels of D-alanine carboxypepetidase. Nature 297, 702–704.PubMedCrossRefGoogle Scholar
  19. Mengin-Lecreulx, D., Parquet, C., Desviat, L.R., Pla, J., Flouret, B., Ayala, J.A. and van Heijenoort, J. (1989) Organization of the murE-murG region of Escherichia coli: identification of the murD gene coding for the D-glutamic acid-adding enzyme. J. Bacteriol. 171, 6126–6134.PubMedGoogle Scholar
  20. Matsuhashi, M., Wachi, M. and Ishino, F. (1990) Machinery for cell growth and division: penicillin-binding proteins and other proteins. Res. Microbiol. 141, 89–102.PubMedCrossRefGoogle Scholar
  21. Niki, H., Jaffe, A., Imamura, R., Ogura, T. and Hiraga, S. (1991) The new gene mukB codes for a 177 kDa protein with coiled-coil domains involved in chromosome partitioning in E. coli. EMBO J 10, 183–193.PubMedGoogle Scholar
  22. Robinson, A.C., Kenan, D.J., Hatfull, G.F., Sullivan, N.F., Spiegelberg, R. and Donachie, W.D. (1984) DNA sequence and transcriptional organization of essential cell division genes ftsQ and ftsA of E. coli: evidence for overlapping functional units. J. Bacteriol. 160, 546–555.PubMedGoogle Scholar
  23. Robinson, A.C., Kenan, D.J., Sweeney, J. and Donachie, W.D. (1986) Further evidence for overlapping transcriptional units in an Escherichia coli cell envelope-cell division gene cluster: DNA sequence and transcriptional organization of the ddl ftsQ region. J. Bacteriol. 167, 809–817.PubMedGoogle Scholar
  24. Robinson, A.C., Collins, J.F. and Donachie, W.D. (1987) Prokaryotic and eukaryotic cell cycle proteins. Nature 328, 766.PubMedCrossRefGoogle Scholar
  25. Vinella, D., D’Ari, R. and Bouloc, P. (1991) Penicillin-binding protein 2 is dispensible in Escherichia coli when ppGpp is induced. EMBO J 11, 1493–1501.Google Scholar
  26. Wachi, M., Doi, M., Okada, Y. and Matsuhashi, M. (1989) New mre genes mreC and mreD, responsible for formation of the rod shape of Escherichia coli cells. J. Bacteriol. 171, 6511–6516.PubMedGoogle Scholar
  27. Wachi, M. and Matsuhashi, M. (1989) Negative control of cell division by mreB, a gene that functions in determining the rod shape of Escherichia coli cells. J. Bacteriol. 171, 3123–3127.PubMedGoogle Scholar
  28. Wang, X, de Boer, P.A.J. and Rothfield, L.I. (1991) A factor that positively regulates cell division by activating transcription of the major cluster of essential cell division genes of Escherichia coli. EMBO J 10, 3 3 63–3372.Google Scholar
  29. Yi, Q-M., Rockenbach, S., Ward, J.E., Jr. and Lutkenhaus, J.F. (1985) Structure and expression of the cell division genes ftsQ, ftsA and ftsZ. J. Mol. Biol. 184, 399–412.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • William D. Donachie
    • 1
  1. 1.Institute of Cell and Molecular BiologyUniversity of EdinburghEdinburghScotland

Personalised recommendations