Bacterial Growth and Lysis pp 183-188 | Cite as
Does PBP2 Regulate Cell Division in E. coli?
Abstract
Although penicillin has not made war humane, it probably saved over a million lives during World War II. The action of penicillin and related β-lactam antibiotics was early recognized to be extrmely broad, affecting the vast majority of bacterial species, and at the same time highly specific, generally producing little effect on eukaryotic cells. As the complex structure of the bacterial cell wall became known, the mechanism of action of β-lactams was also revealed: they bind covalently to the PBPs (‘penicillin binding proteins’), a set of integral membrane proteins which catalyse the terminal steps in the synthesis of the rigid peptoglycan wall (for review see Waxman and Strominger, 1983; Ghuysen, 1991).
Keywords
Wild Type Strain Glycan Chain Muramic Acid Peptidoglycan Synthesis Transpeptidase ActivityPreview
Unable to display preview. Download preview PDF.
References
- Aono, R., Yamasaki, M. and Tamura, G. (1978) Changes in composition of envelope proteins in adenylate cyclase-or cyclic AMP receptor protein-deficient mutants of Escherichia coli. J. Bacteriol. 136, 812–814.PubMedGoogle Scholar
- Begg, K.J., Takasuga, A., Edwards, D.H., Edwards, J., Edwards, D.S., Spratt, B.G., Adachi, H., Ohta, T., Matsuzawa, H. and Donachie, W.D. (1990) The balance between different peptidoglycan precursors determines whether Escherichia coli cells will elongate or divide. J. Bacteriol. 172, 6697–6708.PubMedGoogle Scholar
- Botta, G.A. and Park, J.T. (1981) Evidence of penicillin-binding protein 3 in murein synthesis during septation but not during cell elongation. J. Bacteriol. 145, 333–340.PubMedGoogle Scholar
- Bouloc, P., Jaffé, A. and D’Ari, R. (1988) Preliminary physiologie characterization and genetic analysis of a new Escherichia coli mutant, lov, resistant to mecillinam. Rev. Infect. Dis. 10, 905–910.PubMedCrossRefGoogle Scholar
- Bouloc, P., Jaffé, A. and D’Ari, R. (1989) The Escherichia coli lov gene product connects peptidoglycan synthesis, ribosomes and growth rate. EMBO J. 8, 317–323.PubMedGoogle Scholar
- Broome-Smith, J.K. (1985) Construction of a mutant of Escherichia coli that has deletions of both the penicillin-binding protein 5 and 6 genes. J. Gen. Microbiol. 331, 2115–2118.Google Scholar
- Broome-Smith, J.K. and Spratt, B.G. (1982) Deletion of the penicillin-binding protein 6 gene of Escherichia coli. J. Bacteriol. 152, 904–906.PubMedGoogle Scholar
- Buchanan, C.E. and Sowell, M.O. (1982) Synthesis of penicillin-binding protein 6 by stationary-phase of Escherichia coli. J. Bacteriol. 151, 491–494.PubMedGoogle Scholar
- D’Ari, R., Jaffé, A., Bouloc, P. and Robin, A. (1988) Cyclic AMP and cell division in Escherichia coli. J. Bacteriol. 170, 65–70.PubMedGoogle Scholar
- del Portillo, F.G. and de Pedro, M.A. (1991) Penicillin-Binding Protein 2 is essential for the integrity of growing cells of Escherichia coli pon Bstrains. J. Bacteriol. 173, 4530–4532.Google Scholar
- Dombou, M., Bhide, S.V. and Mizushima, S. (1981) Appearance of elongation factor Tu in the outer membrane of sucrose-dependent spectinomycin-resistant mutants of Escherichia coli. Eur. J. Biochem. 113, 397–403.PubMedCrossRefGoogle Scholar
- Donachie, W.D. and Begg, K.J. (1989) Cell length, nucleoid separation, and cell division of rod-shaped and spherical cells of Escherichia coli. J. Bacteriol. 171, 4633–4639.PubMedGoogle Scholar
- Georgopoulos, C.P. and Eisen, H. (1974) Bacterial mutants which block phage assembly. J. Supramolec. Struct. 2, 349–359.CrossRefGoogle Scholar
- Ghuysen, J.-M. (1991) Serine β-lactamases and penicillin-binding proteins. Annu. Rev. Microbiol. 45, 37–67.PubMedCrossRefGoogle Scholar
- Glauner, B., Höltje, J.-V. and Schwarz, U. (1988) The composition of the murein of Escherichia coli. J. Biol. Chem. 263, 10088–10095.PubMedGoogle Scholar
- Höltje, J.-V. and Tuomanen, E.I. (1991) The murein hydrolases of Escherichia coli: properties, functions and impact on the course of infections in vivo. J. Gen. Microbiol. 137, 441–454.PubMedCrossRefGoogle Scholar
- Ishino, F. and Matsuhashi, M. (1981) Peptidoglycan synthetic enzyme activities of highly purified penicillinbinding protein 3 in Escherichia coli: a septum-forming reaction sequence. Biochem. Biophys. Res. Comm. 101, 905–911.PubMedCrossRefGoogle Scholar
- Ishino, F., Mitsui, K., Tanaki, S. and Matsuhashi, M. (1980) Dual enzyme activities of cell wall peptidoglycan synthesis, peptidoglycan transglycosylase and penicillin sensitive transpeptidase, in purified preparations of Escherichia coli penicillin-binding protein 1A. Biochem. Biophys. Res. Comm. 97, 287–293.PubMedCrossRefGoogle Scholar
- Ishino, F., Park, W., Tomioka, S., Tamaki, S., Takase, I., Kunugita, K., Matsuzawa, H., Asoh, S., Ohta, T., Spratt, B.G. and Matsuhashi, M. (1986) Peptidoglycan synthetic activities in membranes of Escherichia coli caused by overproduction of penicillin-binding protein 2 and RodA protein. J. Biol. Chem. 261,7024–7031.PubMedGoogle Scholar
- Izaki, K., Matsuhashi, M. and Strominger, J.L. (1968) Biosynthesis of the bacterial cell walls. XIII. Peptidoglycan transpeptidase and D-alanine carboxypeptidase: penicillin-sensitive enzymatic reaction in strains of Escherichia coli. J. Biol. Chem. 243, 3180–3192.Google Scholar
- Jaffé, A., Chabbert, Y.A. and Derlot, E. (1983) Selection and characterization of β-lactam-resistant Escherichia coli K12 mutants. Antimicrob. Agents Chemother. 23, 622–625.PubMedCrossRefGoogle Scholar
- James, R., Haga, J.Y. and Pardee, A.B. (1975) Inhibition of an early event in the cell division cycle of Escherichia coli by FL 1060, an amidinopenicillanic acid. J. Bacteriol. 122, 1283–1292.PubMedGoogle Scholar
- Kato, J., Suzuki, H. and Hirota, Y. (1985) Dispensability of either penicillin binding protein-la or-lb involved in the essential process for cell elongation in Escherichia coli. Mol. Gen. Genet. 200, 272–277.PubMedCrossRefGoogle Scholar
- Korat, B., Mottl, H. and Kech, W. (1991) Penicillin-binding protein 4 of Escherichia coli: molecular cloning of the dacB gene, controlled overexpression, and alterations in murein composition. Mol. Microbiol. 5, 675–684.PubMedCrossRefGoogle Scholar
- Lleo, M.M., Canepari, P. and Satta, G. (1990) Bacterial cell shape regulation: testing of additional predictions unique to the two-competing-sites model for peptidoglycan assembly and isolation of conditional rodshaped mutants from some wild-type cocci. J. Bacteriol. 172, 3758–3771.PubMedGoogle Scholar
- Lund, F. and Tybring, L. (1972) 6β-amidinopenicillanic acid — a new group of antibiotics. Nature New Biol. 236, 135–137.PubMedGoogle Scholar
- Markiewicz, Z., Broome-Smith, J.K., Schwarz, U. and Spratt, B.G. (1982) Spherical E. coli due to elevated levels of D-alanine carboxypeptidase. Nature 297, 702–704.PubMedCrossRefGoogle Scholar
- Matsuhashi, M., Takagaki, Y., Maruyama, I.N., Tanaki, S., Nishimura, Y., Suzuki, H., Ogino, U. and Hirota, Y. (1977) Mutants of Echerichia coli lacking in highly penicillin-sensitive D-alanine carboxypeptidase activity. Proc. Natl. Acad. Sci. USA. 74, 2976–2979.PubMedCrossRefGoogle Scholar
- Matsuhashi, M., Tamaki, S., Curtis, T.S. and Strominger, J.L. (1979) Mutational evidence for identity of penicillin-binding protein 5 in Escherichia coli with major D-alanine carboxypeptidase IA activity. J. Bacteriol. 137, 644–647.PubMedGoogle Scholar
- Mizuno, T., Yamada, H., Yamagata, H. and Mizushima, S. (1976) Coordinated alteration in ribosomes and cytoplasmic membrane in sucrose-dependent, spectinomycin-resistant mutants of Escherichia coli. J. Bacteriol. 125, 524–530.PubMedGoogle Scholar
- Ogura, T., Bouloc, P., Niki, H., D’Ari, R., Hiraga, S. and Jaffé, A. (1989) Penicillin-Binding Protein 2 is essential in wild-type Escherichia coli but not in lov or cya mutants. J. Bacteriol. 171, 3025–3030.PubMedGoogle Scholar
- Oliver, D. and Beckwith, J. (1982) Identification of a new gene (secA) and gene product involved in the secretion of the envelope proteins. J. Bacteriol. 150, 686–691.PubMedGoogle Scholar
- Paek, K.-H. and Walker, G.C. (1987) Escherichia coli dnaK null mutants are inviable at high temperature. J. Bacteriol. 169, 283–290.PubMedGoogle Scholar
- Park, J.T. and Burman, L. (1973) FL1060 — A new penicillin with a unique mode of action. Biochem. Biophys. Res. Comm. 51, 863–868.PubMedCrossRefGoogle Scholar
- Pisabarro, A.G., Prats, R., Vazquez, D. and Rodriguez-Tébar, A. (1986) Activity of penicillin-binding protein 3 from Escherichia coli. J. Bacteriol. 168, 199–206.PubMedGoogle Scholar
- Powell, J.K. and Young, K.D. (1991) Lysis of Escherichia coli by beta-Lactams which bind penicillinbinding proteins la and lb — Inhibition by Heat Shock Proteins. J. Bacteriol 173, 4021–4026.PubMedGoogle Scholar
- Schmidt, L., Botta, G. and Park, J.T. (1981) Effects of furazlocillin, a β-lactam antibiotic which binds selectively to penicillin-binding protein 3, on Escherichia coli mutant deficient in other penicillinbinding proteins. J. Bacteriol. 145, 632–637.PubMedGoogle Scholar
- Spotts, C.R. and Stanier, R.Y. (1961) Mechanism of streptomycin action on bacteria: a unitary hypothesis. Nature 192, 633–637.PubMedCrossRefGoogle Scholar
- Spratt, B.G. (1976) Identification of the major penicillin binding proteins of Escherichia coli as D-alanine carboxypeptidase I A. J. Bacteriol. 127, 660–663.PubMedGoogle Scholar
- Spratt, B.G. (1978) Escherichia coli resistance to β-lactam antibiotics throught a decrease in the affinity of a target for lethality. Nature 274, 713–715.PubMedCrossRefGoogle Scholar
- Spratt, B.G. (1980) Deletion of the penicillin-binding protein 5 gene of Escherichia coli. J. Bacteriol. 144, 1190–1192.PubMedGoogle Scholar
- Spratt, B.G. and Pardee, A.B. (1975) Penicillin-binding protein and cell shape in E. coli. Nature 254, 515–517.CrossRefGoogle Scholar
- Suzuki, H., Nishimura, Y. and Hirota, Y. (1978) On the process of cellular division in Escherichia coli: a series of mutants of E. coli altered in the penicillin-binding proteins. Proc. Natl. Acad. Sci. U.S.A. 75, 664–668.PubMedCrossRefGoogle Scholar
- Tamaki, S., Nakajima, S. and Matsuhashi, M. (1977) Thermosensitive mutation in Escherichia coli simultaneously causing defects in penicillin-binding protein-IBs and in enzyme activity for peptidoglycan synthesis in vitro. Proc. Natl. Acad. Sci. USA. 74, 5472–5476.PubMedCrossRefGoogle Scholar
- Tybring, L. and Mechior, N.H. (1975) Mecillinam (FL 1060), a 6β-amidinopencillanic acid derivative: bacterial action and synergy in vitro. Antimicrobiol. Agents Chemother. 8, 271–276.CrossRefGoogle Scholar
- Vinella, D., D’Ari, R. and Bouloc, P. (1992) Penicillin-binding protein 2 is dispensable in Escherichia coli when ppGpp synthesis is induced. EMBO 11, in press.Google Scholar
- Wachi, M., Doi, M., Tamaki, S., Park, W., Nakajima-Iijima, S. and Matsuhashi, M. (1987) Mutant isolation and molecular cloning oimre genes, which determine cell shape, sensitivity to mecillinam, and amount of penicillin-binding proteins in Escherichia coli. J. Bacteriol. 169,4935–4940.PubMedGoogle Scholar
- Waxman, D.J. and Strominger, J.L. (1983) Penicillin-binding proteins and the mechanism of action of β-lactam antibiotics. Annu. Rev. Biochem. 52, 825–869.PubMedCrossRefGoogle Scholar
- Xiao, H., Kaiman, M., Ikehara, K., Zemel, S., Glaser, G. and Cashel, M. (1991) Residual guanosine 3′,5′-bispyrophosphate synthetic activity of relA null mutants can be eliminated by spoT null mutations. J. Biol. Chem. 266, 5980–5990.PubMedGoogle Scholar