Murein Structure of Three Different Species of Chemolithotrophic Sulfur Bacteria: Thiobacillus tepidarius, Thiobacillus neapolitanus and Thiobacillus versutus

  • Zdzislaw Markiewicz
  • Jadwiga Baj
  • Iwona Grabowska
  • Zofia Sniezek
Part of the Federation of European Microbiological Societies Symposium Series book series (FEMS, volume 65)

Abstract

The genus Thiobacillus is an extremely heterogeneous group of bacteria. The only criterion for placing all the species in a single genus is that they all obtain energy for autotrophic growth from the oxidation of inorganic sulfur substrates. Some species are obligately chemolitotrophic and autotrophic (e.g. Thiobacillus neapolitanus and Thiobacillus tepidarius) whereas others are facultatively autotrophic and capable of heterotrophic growth using a wide range of organic substrates (e.g. Thiobacillus versutus). The facultative species are frequently indistinguishable from some of the bacteria grouped as Pseudomonas, except for their capacity for growth with reduced sulfur compounds (Kelly and Harrison, 1989). It has been suggested that the facultative or mixotrophic Thiobacillus species be reassigned to the appropriate genera of chemoorganotrophic bacteria (Friedrich and Mitrenga, 1981).

Keywords

Bacillus Cereus Paracoccus Denitrificans Diaminopimelic Acid Muramic Acid Glucosamine Residue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Araki, Y., Nakatani, T., Nakayama, K, and Ito, E. (1972) Occurrence of N-nonsubstituted glucosamine residues in peptidoglycan resistant cell wall from Bacillus cereus. J. Biol. Chem. 247, 6312–6322.PubMedGoogle Scholar
  2. Baj, J. and Markiewicz Z. (1988) Characterization of cell wall murein of Thiobacillus versutus. Acta Micro-biol. Polon. 37, 6–16.Google Scholar
  3. Baj, J., Grabowska, I., Wolska, I. and Markiewicz, Z. (1991) The murein of Thiobacillus versutus. Acta Mic robiol. Polon. 40, 27–35.Google Scholar
  4. Baj, J., Grabowska, I. and Markiewicz Z. (1992) N-nonsubstituted glucosamine residues and other modifications in murein of the obligatory chemolithotroph Thiobacillus neapolitanus. Res. Microbiol. 143, 47–54.PubMedCrossRefGoogle Scholar
  5. Friedrich, C.G. and Mitrenga, G. (1981) Oxidation of thiosulfate by Paracoccus denitrificans and other hydro gen bacteria. FEMS Microbiol. Lett. 10, 209–212.CrossRefGoogle Scholar
  6. Glauner, B. (1988) Separation and quantification of muropeptides with high-performance liquid chromatogra-phy. Analyt. Biochem. 172, 451–464.PubMedCrossRefGoogle Scholar
  7. Hadzija, O. (1974) A simple method for the quantitative determination of muramic acid. Analyt. Biochem. 60 512–517.PubMedCrossRefGoogle Scholar
  8. Hestrin, S. (1949) The reaction of acetylcholine and other carboxylic acid derivatives with hydroxylamine and its analytical application. J. Biol. Chem. 180, 249–261.PubMedGoogle Scholar
  9. Holt, S.C., Shively, J.M. and Greenawalt, J.W. (1974) Fine structure of selected species of the genus Thiobacillus as revealed by chemical fixation and freeze etching. Can. J. Microbiol. 20, 1347–1251.CrossRefGoogle Scholar
  10. Jürgens, U. and Weckesser, J. (1986) Polysaccharide covalently linked to the peptidoglycan of the cyanobac-terium Synechocystis sp. strain PCC 6714, J. Bacteriol. 168, 568–573.Google Scholar
  11. Jürgens, U.J., Rieth, B. and Weckesser, J. (1987a) Partial lack of N-acetyl substitution of glucosamine in the peptidoglycan of the budding, phototrophic Rhodomicrobium vannieli. Z. Naturforsch. 42c, 1165–1170.Google Scholar
  12. Jürgens, U.J., Meissner, J., Fischer, J., König, W. and Weckesser, J. (1987b) Ornithine as a constituent of the peptidoglycan of Chloroflexus aurantiacus, diaminopimelic acid in that of Chlorobium vibrioforme f. thiosulfatophilum. Arch. Microbiol. 148, 72–76.CrossRefGoogle Scholar
  13. Kelly, D. and Harrison, A.P. (1989) Genus Thiobacillus, in “Bergey’s Manual of Systematics Bacteriology” (Folt, J.G., Ed.), pp. 1842–1858. Williams and Wilkins, Baltimore, Hong Kong, London.Google Scholar
  14. Liu, T.Y. and Gotschlich, E.C. (1967) Muramic acid phosphate as a component of the mucopeptide of gram-positive bacteria. J. Biol. Chem. 242, 471–476.PubMedGoogle Scholar
  15. Lowry, O.H., Roberts, N.R., Leiner, K.Y., Wu, M.-J. and Farr, L. (1954) The quantitative biochemistry of the brain. Chemical Methods. J. Biol. Chem. 207, 1–17.Google Scholar
  16. Markiewicz, Z., Glauner, B. and Schwarz, U. (1983) Murein structure and lack of DD-and LD-carboxypepti-dase activities in Caulobacter crescentus. J. Bacteriol. 156, 649–655.PubMedGoogle Scholar
  17. Primosigh J., Pelzer, H., Maass, D. and Weidel, W. (1961) Chemical characterization of muropeptides released from the E. coli B cell wall by enzymic action, Biochim. Biophys. Acta 46, 68–80.PubMedCrossRefGoogle Scholar
  18. Rogers, H.J., Perkins, H.R. and Ward, J.B. (1980) “Microbial Cell Walls and Membranes”. Chapman and Hall, London, New York.CrossRefGoogle Scholar
  19. Schleifer, K.H. (1985) Analysis of the chemical composition and primary structure of murein, in “Methods in Microbiology, Vol. 18”, pp. 123–156. Academic Press, Inc., London.CrossRefGoogle Scholar
  20. Schleifer, K.H. and Seidl, P.H. (1985) Chemical composition and structure of murein, in “Methods in Microbiology, Vol. 18”, pp. 201–219. Academic Press, Inc., London.Google Scholar
  21. Schmelzer, E., Weckesser, J., Warth, R. and Mayer, H. (1982) Peptidoglycan of Rhodopseudomonas viridis, partial lack of N-acetyl substitution of glucosamine. J. Bacteriol. 149, 151–155.PubMedGoogle Scholar
  22. Soby, L.M. and Johnson, P. (1981) Determination of Asparagine and glutamine in polypeptides using bis(1). l-trifluoroacetoxydiodobenzene. Analyt. Biochem. 113, 149–153.PubMedCrossRefGoogle Scholar
  23. Thompson, J.S. and Shockman, P. (1968) A modification of the Park and Johnson reducing sugar determination suitable for the assay of insoluble material: its application to bacterial cell walls. Analyt. Biochem. 22, 260–268.PubMedCrossRefGoogle Scholar
  24. Tsuji, A., Kinoshita, T. and Hoshono, M. (1969) Microdetermination of hexosamines. Chem. Pharm. Bull 17, 217–218.PubMedCrossRefGoogle Scholar
  25. Yokota, A., Schlecht, S and Mayer, H. (1987) Lipopolysaccharides of chemolithotrophic bacteria Thiobacillus versutus and a related Thiobacillus species. FEMS Microbiol. Lett. 44, 197–201.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Zdzislaw Markiewicz
    • 1
  • Jadwiga Baj
    • 1
  • Iwona Grabowska
    • 1
  • Zofia Sniezek
    • 1
  1. 1.Institute of MicrobiologyUniversity of WarsawWarszawa 64Poland

Personalised recommendations