The Conjugative Transposons of Gram-Positive Bacteria

  • Don B. Clewell
  • Susan E. Flannagan

Abstract

Conjugative transposons are characterized by their ability to move from one bacterial cell to another by a process requiring cell-to-cell contact. Evidence for such elements became apparent about 13 years ago from studies of Enterococcus (formerly Streptococcus) faecalis strain DS16, a clinical isolate obtained in 1975 from St. Joseph’s Mercy Hospital in Ann Arbor, Michigan (38, 39). DS16 was of interest at that time because of its multiple antibiotic resistance and hemolytic properties. It was found to harbor a hemolysin/bacteriocin plasmid, pAD1, and a resistance plasmid, pAD2 (26, 112). pAD1 was conjugative and conferred a mating response to a peptide sex pheromone secreted by potential recipient (pAD1-free) cells, whereas pAD2 conferred resistance to erythromycin, streptomycin, and kanamycin and was nonconjugative. The erythromycin resistance determinant (erm) of pAD2 was associated with a transposon designated Tn917 (111). Derivatives of DS16 cured of both pAD1 and pAD2 maintained a resistance to tetracycline (Tc), indicating that a Tc-resistance determinant (tet) was located on the bacterial chromosome. A series of filter membrane mating experiments designed to examine transfer of the various resistance determinants of DS16 showed that tet could be mobilized at frequencies of 10−5 per donor (38). The majority of transconjugants (about 90%) harbored pAD1 and had tet on the chromosome. Among most of the remaining transconjugants, tet was linked with pAD1, and this correlated with insertion of a 16-kb segment of DNA. A surprising result arose when certain “control” experiments were performed using a plasmid-free (cured) derivative of DS16 as a donor. As reported by Franke and Clewell (38), tet was able to transfer from such strains at a frequency of about 10−8 per donor, and transconjugants could pass on the trait in subsequent matings. Intercellular transfer was DNase resistant and was not affected by the presence of a Recallele in either the donor or the recipient. In addition, donor filtrates did not transfer tet to recipients, nor did donor cells exposed to chloroform prior to mating. Because cell contact appeared necessary, the term “conjugative transposon,” was adopted, and the element was designated Tn916. Additional studies showing interspecies transfer added strong support that the transposon encoded its own fertility functions.

Keywords

Resistance Determinant Tetracycline Resistance Conjugative Transfer Clostridium Acetobutylicum Bacterial Chromosome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Argos, P., Landy, A., Abremski, K., Egan, J.B., Haggard-Ljungquist, E., Hoess, R.H., Kahn, M.L., Kalionis, B., Narayana, S.V.L., Pierson, L.S., III, Sternberg, N., and Leong, J.M., 1986, The integrase family of site-specific recombinases: regional similarities and global diversity, EMBO J. 5: 433–440.Google Scholar
  2. 2.
    Ayoubi, P., Kilic, A.O., and Vijayakumar, M.N., 1991, Tn5253, the pneumococcal ft(cat let) BM6001 element, is a composite structure of two conjugative transposons Tn5251 and Tn5252, J. Bacteriol. 173: 1617–1622.PubMedGoogle Scholar
  3. 3.
    Bentorcha, E, Clermont, D., de Cespedes, G., and Horaud, T., 1992, Natural occurrence of structures in oral streptococci and enterococci with DNA homology to Tn916, Antimicrob. Agents Chemother. 36: 59–63.PubMedCrossRefGoogle Scholar
  4. 4.
    Bentorcha, E, de Cespedes, G., and Horaud, T., 1991, Tetracycline resistance heterogeneity in Enterococcus faecium, Antimicrob. Agents Chemother. 35: 808–812.PubMedCrossRefGoogle Scholar
  5. 5.
    Berman, M.H., and Frazer, A.C., 1991, Program Abstr. 91st General Meeting, American Society for Microbiology, Abstr. Q-21.Google Scholar
  6. 6.
    Bertram, J., and Durre, P., 1989, Conjugal transfer and expression of streptococcal transposons in Clostridium acetobutylicum, Arch. Microbiol. 151: 551–557.CrossRefGoogle Scholar
  7. 7.
    Bertram, J., Kuhn, A., and Durre, P., 1990, Tn916-induced mutants of Clostridium acetobutylicum defective in regulation of solvent formation, Arch. Microbiol. 153: 373–377.CrossRefGoogle Scholar
  8. 8.
    Bertram, J,. Stratz, M., and Durre, P., 1991, Natural transfer of conjugative transposon Tn916 between gram-positive and gram negative bacteria, J. Bacteriol. 173: 443–448.PubMedGoogle Scholar
  9. 8a.
    Bringel, F., von Alstine, G. L., and Scott, J. R., 1992, Conjugative transposition of Tn916: the transposon int gene is required only in the donor. J. Bacterial. 174: 4036–4041.Google Scholar
  10. 9.
    Burdett, V., 1990, Nucleotide sequence of the tet(M) gene of Tn916, Nucl. Acids Res. 18: 6137.PubMedCrossRefGoogle Scholar
  11. 10.
    Buu-Hoi, A., and Horodniceanu, T., 1980, Conjugative transfer of multiple antibiotic resistance markers in Streptococcus pneumoniae, J. Bacteriol. 143: 313–320.PubMedGoogle Scholar
  12. 11.
    Caillaud, F, Carlier, C., and Courvalin, P., 1987, Physical analysis of the conjugative shuttle transposon Tn1545, Plasmid 17: 58–60.PubMedCrossRefGoogle Scholar
  13. 12.
    Caillaud, E, and Courvalin, P., 1987, Nucleotide sequence of the ends of the conjugative shuttle transposon Tn1545, Mol. Gen. Genet. 209: 110–115.PubMedCrossRefGoogle Scholar
  14. 13.
    Caillaud, F, Trieu-Cuot, P, Cartier, C., and Courvalin, P, 1987, Nucleotide sequence of the kanamycin resistance determinant of the pneumococcal transposon Tn1545: evolutionary relationships and transcriptional analysis of aphA-3 genes, Mol. Gen. Genet. 207: 509–513.PubMedCrossRefGoogle Scholar
  15. 14.
    Camilli, A., Paynton, C.R., and Portnoy, D.A., 1989, Intracellular methicillin selection of Listeria monocytogenes mutants unable to replicate in a macrophage cell line, Proc. Natl. Acad. Sci. USA 86: 55225526.Google Scholar
  16. 15.
    Caparon, M.G., and Scott, J.R., 1987, Identification of a gene that regulates expression of M protein, the major virulence determinant of group A streptococci, Proc. Natl. Acad. Sci. USA 84: 8677–8681.PubMedCrossRefGoogle Scholar
  17. 16.
    Caparon, M.G., and Scott, J.R., 1989, Excision and insertion of the conjugative transposon Tn9/6 involves a novel recombination mechanism, Cell 59: 1027–1034.PubMedCrossRefGoogle Scholar
  18. 17.
    Casey, J., Daly, C., and Fitzgerald, G.E. 1991, Chromosomal integration of plasmid DNA by homologous recombination in Enterococcus faecalis and Lactococcus lactis subsp. lactis hosts harboring Tn919, Appl. Environ. Microbiol. 57: 2677–2682.PubMedGoogle Scholar
  19. 18.
    Canfield, P.W., Shah, G.R., and Hollingshead, S.K., 1990, Use of transposon Tn916 to inactivate and isolate a mutacin-associated gene from Streptococcus mutans, Infec. Immun. 58: 4126–4135.Google Scholar
  20. 19.
    Christie, P.J., and Dunny, G.M., 1986, Identification of regions of the Streptococcus faecalis plasmid pCF-10 that encode antibiotic resistance and pheromone response functions, Plasmid 15: 230–241.PubMedCrossRefGoogle Scholar
  21. 20.
    Christie, P.J., Korman, R.Z., Zahler, S.A., Adsit, J.C., and Dunny, G.M., 1987, Two conjugation systems associated with Streptococcus faecalis plasmid pCF10: identification of a conjugative transposon that transfers between S. faecalis and Bacillus subtilis, J. Bacteriol. 169: 2529–2536.PubMedGoogle Scholar
  22. 21.
    Clermont, D., and Horaud, T., 1990, Identification of chromosomal antibiotic resistance genes in Streptococcus anginosus (“S. milleri”), Antimicrob. Agents Chemother. 34: 1685–1690.PubMedCrossRefGoogle Scholar
  23. 22.
    Clewell, D.B. An, F.Y., White, B.A., and Gawron-Burke, C., 1985, Streptococcus faecalis sex pheromone (cAM373) also produced by Staphylococcus aureus and identification of a conjugative transposon (Tn918), J. Bacteriol. 162:1212–1220.Google Scholar
  24. 23.
    Clewell, D.B., Flannagan, S.E., Ike, Y., Jones, J.M., and Gawron-Burke, C., 1988, Sequence analysis of termini of conjugative transposon Tn916, J. Bacteriol. 170: 3046–3052.PubMedGoogle Scholar
  25. 24.
    Clewell, D.B., Flannagan, S.E., Zitzow, L.A., Su, Y.A., He, P, Senghas, E., and Weaver, K.E., 1991, Properties of conjugative transposon Tn9/6, in: Genetics and Molecular Biology of Streptococci, Lactococci, and Enterococci ( G.M. Dunny, P.P. Cleary, and L.L. McKay, eds.), American Society for Microbiology, Washington, DC, pp. 39–44.Google Scholar
  26. 25.
    Clewell, D.B., and Gawron-Burke, C., 1986, Conjugative transposons and the dissemination of antibiotic resistance in streptococci, Ann. Rev. Microbiol. 40: 635–659.CrossRefGoogle Scholar
  27. 26.
    Clewell, D.B., Tomich, P.K., Gawron-Burke, M.C., Franke, A.E., Yagi, Y., and An, F.Y., 1982, Mapping of Streptococcus faecalis plasmids pAD1 and pAD2 and studies relating to transposition of Tn9/7, J. Bacteriol. 152: 1220–1230.PubMedGoogle Scholar
  28. 27.
    Courvalin, P., and Carlier, C., 1986, Transposable multiple antibiotic resistance in Streptococcus pneumoniae, Mol. Gen. Genet. 205: 291–297.PubMedCrossRefGoogle Scholar
  29. 28.
    Courvalin, P., and Carlier, C., 1987, Tn1545: a conjugative shuttle transposon, Mol. Gen. Genet. 206: 259–264.PubMedCrossRefGoogle Scholar
  30. 29.
    Craig, N.L., and Kleckner, N., 1987, Transposition and site-specific recombination, in: Escherichia coli and Salmonella typhimurium, ( F.C. Neidhardt, J.L. Ingraham, K.B. Low, B. Magasanik, M. Schaechter, and H.E. Umbarger, eds.), American Society for Microbiology, Washington, DC, pp. 1054–1070.Google Scholar
  31. 30.
    Craig, N.L., and Nash, H.A., 1983, The mechanism of phage X site-specific recombination: site-specific breakage of DNA by Int topoisomerase, Cell 35: 795–803.Google Scholar
  32. 31.
    Dang-Van, A., Tiraby, G., Acar, J.F., Shaw, W.V., and Bouanchaud, D.H., 1978, Chloramphenicol resistance in Streptococcus pneumoniae: enzymatic acetylation and possible plasmid linkage, Antimicrob. Agents Chemother. 13: 577–583.PubMedCrossRefGoogle Scholar
  33. 32.
    Doucet-Populaire, F., Trieu-Cuot, P., Dosbaa, I., Andremont, A., and Courvalin, P., 1991, Inducible transfer of conjugative transposon Tn1545 from Enterococcus faecalis to Listeria monocytogenes in the digestive tracts of gnotobiotic mice, Antimicrob. Agents Chemother. 35: 185–187.Google Scholar
  34. 33.
    Dybvig, K., and Alderete, J., 1988, Transformation of Mycoplasma pulmonis and Mycoplasma hyorhinis: transposition of Tn916 and formation of cointegrate structures, Plasmid 20: 33–41.PubMedCrossRefGoogle Scholar
  35. 34.
    Dybvig, K., and Cassell, G.H., 1987, Transposition of gram-positive transposon Tn916 in Acholeplasma laidlawii and Mycoplasma pulmonis, Science 235: 1392–1394.PubMedCrossRefGoogle Scholar
  36. 35.
    Fitzgerald, G.F., and Clewell, D.B., 1985, A conjugative transposon (Tn919) in Streptococcus sanguis, Infect. Immun. 47: 415–420.PubMedGoogle Scholar
  37. 36.
    Flannagan, S.E., and Clewell, D.B., 1991, Conjugative transfer of Tn916 in Enterococcus faecalis: trans activation of homologous transposons, J. Bacteriol. 173: 7136–7141.PubMedGoogle Scholar
  38. 37.
    Fletcher, H.M., Marri, L., and Daneo-Moore, L., 1989, Transposon-916-like elements in clinical isolates of Enterococcus faecium, J. Gen. Microbiol. 135: 3067–3077.Google Scholar
  39. 38.
    Franke, A.E., and Clewell, D.B., 1981, Evidence for a chromosome-borne resistance transposon (Tn916) in Streptococcus faecalis that is capable of “conjugal” transfer in the absence of a conjugative plasmid, J. Bacteriol. 145: 494–502.PubMedGoogle Scholar
  40. 39.
    Franke, A.E., and Clewell, D.B., 1981, Evidence for conjugal transfer of a Streptococcus faecalis transposon (Tn916) from a chromosomal site in the absence of plasmid DNA, Cold Spring Harbor Symp. Quant. Biol. 45: 77–80.PubMedCrossRefGoogle Scholar
  41. 40.
    Gaillard, J.L., Berche, P., and Sansonetti, P., 1986, Transposon mutagenesis as a tool to study the role of hemolysin in the virulence of Listeria monocytogenes, Infec. Immun. 52: 50–55.Google Scholar
  42. 41.
    Gawron-Burke, C., and Clewell, D.B., 1982, A transposon in Streptococcus faecalis with fertility properties, Nature (London) 300: 281–284.CrossRefGoogle Scholar
  43. 42.
    Gawron-Burke, C., and Clewell, D.B., 1984, Regeneration of insertionally inactivated streptococcal DNA fragments after excision of transposon Tn916 in Escherichia coli: strategy for targeting and cloning of genes from gram-positive bacteria, J. Bacteriol. 159: 214–221.PubMedGoogle Scholar
  44. 43.
    Guffanti, A.A., Quirk, P.G., and Krulwich, T.A., 1991, Transfer of Tn925 and plasmids between Bacillus subtilis and allcaliphilic Bacillus firmus OF4 during Tn925-mediated conjugation, J. Bacteriol. 173: 1686 1689.Google Scholar
  45. 44.
    Hachler, H., Kayser, F.H., and Berger-Bachi, B., 1987, Homology of a transferable tetracycline resistance determinant of Clostridium difficile with Streptococcus (Enterococcus) faecalis transposon Tn916, Antimicrob. Agents Chemother. 31: 1033–1038.PubMedCrossRefGoogle Scholar
  46. 45.
    Hendrick, C.A., Johnson, L.K., Tomes, N.J., Smiley, B.K., and Price, J.P., 1991, Insertion of Tn916 into Bacillus pumilus plasmid pMGD302 and evidence for plasmid transfer by conjugation, Plasmid 26: 1–9.PubMedCrossRefGoogle Scholar
  47. 46.
    Hespell, R.B., and Whitehead, T.R., 1991, Conjugal transfer of Tn916, Tn916.E, and pAM(31 from Enterococcus faecalis to Butyrivibrio fibrisolvens strains, Appl. Environ. MicrobioL 57: 2703–2709.PubMedGoogle Scholar
  48. 47.
    Hespell, R.B., and Whitehead, T.R., 1991, Introduction of Tn916 and pAMßl into Streptococcus bovis JB1 by conjugation, Appl. Environ. Microbiol. 57: 2710–2713.PubMedGoogle Scholar
  49. 48.
    Hill, C., Daly, C., and Fitzgerald, G.E. 1985, Conjugative transfer of the transposon Tn919 to lactic acid bacteria, FEMS Microbiol. Lett. 30; 115–119.CrossRefGoogle Scholar
  50. 49.
    Hill, C., Daly, C., and Fitzgerald, G.E. 1987, Development of high-frequency delivery system for transposon Tn919 in lactic streptococci: random insertion in Streptococcus lattis subsp. diacetylactis 18–16, Appl. Environ. Microbiol. 53: 74–78.PubMedGoogle Scholar
  51. 50.
    Hill, C., Venema, G., Daly, C., and Fitzgerald, G.F., 1988, Cloning and characterization of the tetracycline resistance determinant of and several promoters from within the conjugative transposon Tn919, Appl. Environ. Microbiol. 54: 1230–1236.PubMedGoogle Scholar
  52. 51.
    Holland, J., Towner, K.J., and Williams, P., 1992, Tn916 insertion mutagenesis in Escherichia coli and Haemophilus influenzae type b following conjugative transfer, J. Gen. Microbiol. 138: 509–515.PubMedGoogle Scholar
  53. 52.
    Horaud, T., de Cespedes, G., Clermont, D., David, F, and Delbos, F, 1991, Variability of chromosomal genetic elements in streptococci, in: Genetics and Molecular Biology of Streptococci, Lactococci, and Enterococci ( G.M. Dunny, P.P. Cleary, and L.L. McKay, eds.), American Society for Microbiology, Washington, DC, pp. 16–20.Google Scholar
  54. 53.
    Horaud, T., Delbos, F, and de Cespedes, G., 1990, Tn3702, a conjugative transposon in Enterococcus faecalis, FEMS Microbiol. Lett. 72: 189–194.CrossRefGoogle Scholar
  55. 54.
    Horaud, T., Le Bouguenec, C., and Pepper, K., 1985, Molecular genetics of resistance to macrolides, lincosamides and streptogramin B (MLS) in streptococci, J. Antimicrob. Chemother. 16A (Suppl.): 111–135.Google Scholar
  56. 55.
    Horn, N., Swindell, S., Dodd, H., and Gasson, M., 1991, Nisin biosynthesis genes are encoded by a novel conjugative transposon, Mol. Gen. Genet. 228: 129–135.Google Scholar
  57. 56.
    Horodniceanu, T., Bougueleret, L., and Bieth, G., 1981, Conjugative transfer of multiple-antibiotic resistance markers in beta-hemolytic group A, B, F, and G streptococci in the absence of extrachromosomal deoxyribonucleic acid, Plasmid 5: 127–137.PubMedCrossRefGoogle Scholar
  58. 57.
    Ike, Y., Flanagan, S.E., and Clewell, D.B., 1992, Hyperhemolytic phenomena associated with insertions of Tn916 into the hemolysin determinant of Enterococcus faecalis plasmid pADI, J. Bacteriol. 174: 1801 1809.Google Scholar
  59. 58.
    Inamine, J.M., and Burdett, V., 1985, Structural organization of a 67-kilobase streptococcal conjugative element mediating multiple antibiotic resistance, J. Bacteriol. 161: 620–626.PubMedGoogle Scholar
  60. 59.
    Ivins, B.E., Welkos, S.L., Knudson, G.B., and Leblanc, D.J., 1988, Transposon Tn916 mutagenesis in Bacillus anthracis, Infec. Immun. 56: 176–181.Google Scholar
  61. 60.
    Jones, J.M., Gawron-Burke, C., Flannagan, S.E., Yamamoto, M., Senghas, E., and Clewell, D.B., 1987, Structural and genetic studies of the conjugative transposon Tn916, in: Streptococcal Genetics (J.J. Ferretti, and R. Curtiss III, eds.), American Society for Microbiology, Washington, DC, pp. 54— 60.Google Scholar
  62. 61.
    Jones, J.M., Yost, S.C., and Pattee, P.A., 1987, Transfer of the conjugal tetracycline resistance transposon Tn916 from Streptococcus faecalis to Staphylococcus aureus and identification of some insertion sites in the staphylococcal chromosome, J. Bacteriol. 169: 2121–2131.PubMedGoogle Scholar
  63. 62.
    Kathariou, S., Metz, P., Hof, H., and Goebel, W, 1987, Tn916-induced mutations in the hemolysin determinant affecting virulence of Listeria monocytogenes, J. Bacteriol. 169: 1291–1297.PubMedGoogle Scholar
  64. 63.
    Kathariou, S., Stephens, D.S., Spellman, P., and Morse, S.A., 1990, Transposition of Tn9/6 to different sites in the chromosome of Neisseria meningitidis: a genetic tool for meningococcal mutagenesis, Molec. Microbiol. 4: 729–735.CrossRefGoogle Scholar
  65. 64.
    Kauc, L., and Goodgal, S.H., 1989, Introduction of transposon Tn916 into Haemophilus influenzae and Haemophilus parainfluenzae, J. Bacteriol. 171: 6625–6628.PubMedGoogle Scholar
  66. 65.
    Knauf, H.J., Vogel, R.F., and Hammes, W.P., 1989, Introduction of the transposon Tn919 into Lactobacillus curvatus Lc2-c, FEMS Microbiol. Len. 65: 101–104.CrossRefGoogle Scholar
  67. 66.
    Kuypers, J.M., and Proctor, R.A., 1989, Reduced adherence to traumatized rat heart valves by a lowfibronectin-binding mutant of Staphylococcus aureus, Infec. Immun. 57: 2306–2312.Google Scholar
  68. 67.
    Landy, A., 1989, Dynamic, structural, and regulatory aspects of X site-specific recombination, Anna. Rev. Biochem. 58: 913–949.CrossRefGoogle Scholar
  69. 68.
    Lauer, G., Pastrana, R., Sherley, J., and Ptashne, M., 1981, Construction of overproducers of the bacteriophage 434 repressor and cro proteins, J Molec. Appl. Genet. 1: 139–147.Google Scholar
  70. 69.
    Le Bouguenec, C., de Cespedes, G., and Horaud, T., 1988, Molecular analysis of a composite chromosomal conjugative element (Tn3701) of Streptococcus pyogenes, J. Bacteriol. 170: 3930–3936PubMedGoogle Scholar
  71. 70.
    Le Bouguenec, C., de Cespedes, G., and Horaud, T., 1990, Presence of chromosomal elements resembling the composite structure Tn3701 in streptococci, J. Bacteriol. 172: 727–734.PubMedGoogle Scholar
  72. 71.
    Le Bouguenec, C., Horaud, T, Bieth, G., Colimon, R., and Dauguet, C., 1984, Translocation of antibiotic resistance markers of a plasmid-free Streptococcus pyogenes (group A) strain into different streptococcal hemolysin plasmids, Mol. Gen. Genet. 194: 377–387.PubMedCrossRefGoogle Scholar
  73. 72.
    Le Bouguenec, C., Horaud, T, Geoffroy, C., and Alouf, J.E., 1988, Insertional inactivation by Tn3701 of p1P964 hemolysin expression in Enterococcus faecalis, FEMS Microbiol. Len. 49: 455–458.Google Scholar
  74. 73.
    Leong, J.M., Nunes-Duby, S.E., Oser, A.B., Lesser, C.F., Youderian, P., Susskind, M.M., and Landy, A., 1986, Structural and regulatory divergence among site-specific recombination genes of lambdoid phage, J. Mol. Biol. 189: 603–616.PubMedCrossRefGoogle Scholar
  75. 74.
    Lin, W, and Johnson, E.A., 1991, Transposon Tn916 mutagenesis in Clostridium botulinum, Appl. Environ. Microbiol. 57: 2946–2950.PubMedGoogle Scholar
  76. 75.
    Martin, P., Trieu-Cuot, P., and Courvalin, P., 1986, Nucleotide sequence of the tetM tetracycline resistance determinant of the streptococcal conjugative shuttle transposon Tn1545, Nucl. Acids Res. 14: 7047–7058.PubMedCrossRefGoogle Scholar
  77. 76.
    Mizuuchi, K., Weisberg, R., Enquist, L., Mizuuchi, M., Buraczynska, M., Foeller, C., Hsu, P.L., Ross, W, and Landy, A., 1981, Structure and function of the phage k an site: size, Int-binding sites, and location of the crossover point, Cold Spring Harbor Symp. Quant. Biol. 45: 429–437.PubMedCrossRefGoogle Scholar
  78. 77.
    Morisato, D., and Kleckner, N., 1987, Tn10 transposition and circle formation in vitro, Cell 51: 101–111.Google Scholar
  79. 78.
    Mullany, P., Wilks, M., and Tabaqchali, S., 1991, Transfer of Tn916 and Tn916.E into Clostridium difficile: demonstration of a hot-spot for these elements in the C. difficile genome, FEMS Microbiol. Len. 79: 191–194.Google Scholar
  80. 79.
    Murray, B.E., An, F.Y., and Clewell, D.B., 1988, Plasmids and pheromone response of the 3–1actamase producer Streptococcus (Enterococcus) faecalis HH22, Antimicrob. Agents Chemother. 32: 547–551.PubMedCrossRefGoogle Scholar
  81. 80.
    Naglich, J.G., and Andrews, R.E., Jr., 1988, Introduction of the Streptococcus faecalis transposon Tn916 into Bacillus thuringiensis subsp. israelensis, Plasmid 19: 84–93.PubMedCrossRefGoogle Scholar
  82. 81.
    Naglich, J.G., and Andrews, R.E., Jr., 1988, Tn916-dependent conjugal transfer of pCI94 and pUB110 from Bacillus subtilis into Bacillus thuringiensis subsp. israelensis, Plasmid 20: 113–126.PubMedCrossRefGoogle Scholar
  83. 82.
    Nassif, X., Puaoi, D., and So, M., 1991, Transposition of Tn1545-.3 in the pathogenic neisseriae: a genetic tool for mutagenesis, J. Bacteriol. 173: 2147–2154.PubMedGoogle Scholar
  84. 83.
    Natarajan, M.R., and Oriel, P., 1991, Conjugal transfer of recombinant transposon Tn916 from Escherichia coli to Bacillus stearothermophilus, Plasmid 26: 67–73.PubMedCrossRefGoogle Scholar
  85. 84.
    Nida, K., and Cleary, PP., 1983, Insertional inactivation of streptolysin S expression in Streptococcus pyogenes, J. Bacteriol. 155: 1156–1161.PubMedGoogle Scholar
  86. 85.
    Norgren, M., Caparon, M.G., and Scott, J.R., 1989, A method for allelic replacement that uses the conjugative transposon Tn916: deletion of the emm6.1 allele in Streptococcus pyogenes JRS4, Infec. Immun. 57: 3846–3850.Google Scholar
  87. 86.
    Norgren, M., and Scott, J.R., 1991, The presence of conjugative transposon Tn916 in the recipient strain does not impede transfer of a second copy of the element, J. Bacteriol. 173: 319–324.PubMedGoogle Scholar
  88. 87.
    Pargellis, C.A., Nunes-Duby, S.E., Moitoso de Vargas, L., and Landy, A., 1988, Suicide recombination substrates yield covalent X integrase-DNA complexes and lead to identification of the active site tyrosine, J. Biol. Chem. 263: 7678–7685.PubMedGoogle Scholar
  89. 88.
    Perez-Casal, J., Caparon, M.G., and Scott, J.R., 1991, Mry, a trans-acting positive regulator of the M protein gene of Streptococcus pyogenes with similarity to the receptor proteins of two-component regulatory systems, J. Bacteriol. 173: 2617–2624.PubMedGoogle Scholar
  90. 89.
    Poyart-Salmeron, C., Trieu-Cuot, P., Carlier, C., and Courvalin, P., 1989, Molecular characterization of two proteins involved in the excision of the conjugative transposon Tn1545: homologies with other site-specific recombinases, EMBO J. 8: 2425–2433.PubMedGoogle Scholar
  91. 90.
    Poyart-Salmeron, C., Trieu-Cuot, P., Carlier, C., and Courvalin, P., 1990, The integration-excision system of the conjugative transposon Tn1545 is structurally and functionally related to those of lambdoid phages, Mol. Microbiol. 4: 1513–1521.PubMedCrossRefGoogle Scholar
  92. 91.
    Procino, J.K., Marri, L., Shockman, G.D., and Daneo-Moore, L., 1988, Tn916 insertional inactivation of multiple genes on the chromosome of Streptococcus mutans GS-5, Infec. Immun. 56: 2866–2870.Google Scholar
  93. 92.
    Rauch, P.J.G., and de Vos, W.M., 1992, Characterization of the novel nisin-sucrose conjugative transposon Tn5276 and its insertion in Lactococcus lattis, J. Bacteriol. 174: 1280–1287.PubMedGoogle Scholar
  94. 93.
    Roberts, D., Hoopes, B.C., McClure, W.R., and Kleckner, N., 1985, ISIO transposition is regulated by DNA adenine methylation, Cell, 43: 117–130.PubMedCrossRefGoogle Scholar
  95. 94.
    Roberts, M.C., 1990, Characterization of the Tet M determinants in urogenital and respiratory bacteria, Antimicrob. Agents Chemother. 34: 476–478.PubMedCrossRefGoogle Scholar
  96. 95.
    Roberts, M.C., and Kenny, G.E., 1987, Conjugal transfer of transposon Tn916 from Streptococcus faecalis to Mycoplasma hontinis, J. Bacteria. 169: 3836–3839.Google Scholar
  97. 96.
    Roberts, M.C., and Lansciardi, J., 1990, Transferable Tet M in Fusobacterium nucleatum, Antimicrob. Agents Chemother. 34: 1836–1838.PubMedCrossRefGoogle Scholar
  98. 97.
    Robins-Brown, R.M., Gaspar, M.N., Ward, J.I., Wachsmuth, I.K., Koornhof, H.J., Jacobs, M.R., and Thornsberry, C., 1979, Resistance mechanisms of multiply resistant pneumococci: antibiotic degradation studies, Antimicrob. Agents Chemother. 15: 470–474.PubMedCrossRefGoogle Scholar
  99. 98.
    Rubens, C.E., and Heggen, L.M.,1988, Tn9/6AE: A Tn916 transposon derivative expressing erythromycin resistance, Plasmid 20: 137–142.Google Scholar
  100. 99.
    Rubens, C.E., Wessels, M.R., Heggen, L.M., and Kasper, D.L., 1987, Transposon mutagenesis of type III group B Streptococcus: correlation of capsule expression with virulence, Proc. Natl. Acad. Sci. USA 84: 7208–7212.PubMedCrossRefGoogle Scholar
  101. 100.
    Scott, J.R., Kirchman, P.A., and Caparon, M.G., 1988, An intermediate in the transposition of the conjugative transposon Tn916, Proc. Natl. Acad. Sci. USA 85: 4809–4813.PubMedCrossRefGoogle Scholar
  102. 101.
    Sen, S., and Oriel, P., 1990, Transfer of transposon Tn916 from Bacillus subtilis to Thermus aquaticus, FEMS Microbiol. Len. 67: 131–134.CrossRefGoogle Scholar
  103. 102.
    Senghas E., Jones, J.M., Yamamoto, M., Gawron-Burke, C., and Clewell, D.B., 1988, Genetic organization of the bacterial conjugative transposon Tn916, J. Bacreriol. 170: 245–249.Google Scholar
  104. 103.
    Shoemaker, N.B., Smith, M.D., and Guild, W.R., 1979, Organization and transfer of heterologous chloramphenicol and tetracycline resistance genes in pneumococcus, J. Bacreriol. 139: 432–441.Google Scholar
  105. 104.
    Shoemaker, N.B., Smith, M.D., and Guild, W.R., 1980, DNase-resistant transfer of chromosomal cat and tet insertions by filter mating in pneumococcus, Plasmid 3: 80–87.PubMedCrossRefGoogle Scholar
  106. 105.
    Smith, M.D., and Guild, W.R., 1979, A plasmid in Streptococcus pneumoniae, J. Bacteriol. 137: 735–739.PubMedGoogle Scholar
  107. 106.
    Smith, M.D., and Guild, W.R., 1982, Evidence for transposition of the conjugative R determinants of Streptococcus agalactiae B109, in: Microbiology-1982 ( D. Schlessinger, ed.), American Society for Microbiology, Washington, DC, pp. 109–111.Google Scholar
  108. 107.
    Storrs, M.J., Poyart-Salmeron, C., Trieu-Cuot, P., and Courvalin, P., 1991, Conjugative transposition of Tn916 requires the excisive and integrative activities of the transposon-encoded integrase, J. Bacreriol. 173: 4347–4352.Google Scholar
  109. 108.
    Stratz, M., Gottschalk, G., and Durre, R, 1990, Transfer and expression of the tetracycline resistance transposon Tn925 in Acetobacterium woodii, FEMS Microbiol. Lett. 68: 171–176.CrossRefGoogle Scholar
  110. 109.
    Su, Y.A., and Clewell, D.B., Characterization of the left four kilobases of conjugative transposon Tn916. Determinants involved in excision, submitted for publication.Google Scholar
  111. 110.
    Su, Y.A., He, P., and Clewell, D.B., 1992, Characterization of the ter(M) determinant of Tn916: evidence for regulation by transcription attenuation, Antimicrob. Agents Chemother. 36: 769–778.PubMedCrossRefGoogle Scholar
  112. 111.
    Tomich, P.K., An, F.Y., and Clewell, D.B., 1980, Properties of erythromycin-inducible transposon Tn917 in Streptococcus faecalis, J. Bacteriol. 141: 1366–1374.PubMedGoogle Scholar
  113. 112.
    Tomich, P.K., An, FY., Damle, S.P., and Clewell, D.B., 1979, Plasmid-related transmissibility and multiple drug resistance in Streptococcus faecalis subsp. zymogenes strain DS16, Antimicrob. Agents Chemother. 15: 828–830.PubMedCrossRefGoogle Scholar
  114. 113.
    Torres, O.R., Korman, R.Z., Zahler, S.A., and Dunny, G.M., 1991, The conjugative transposon Tn925: enhancement of conjugal transfer by tetracycline in Enterococcus faecalis and mobilization of chromosomal genes in Bacillus subtilis and E. faecalis, Mol. Gen. Genet. 225: 395–400.PubMedCrossRefGoogle Scholar
  115. 114.
    Trieu-Cuot, P., Carlier, C., Poyart-Salmeron, C., and Courvalin, P., 1991, An integrative vector exploiting the transposition properties of Tn1545 for insertional mutagenesis and cloning of genes from gram-positive bacteria, Gene 106: 21–27.Google Scholar
  116. 115.
    Trieu-Cuot, P, Poyart-Salmeron, C., Carlier, C., and Courvalin, P., 1990, Nucleotide sequence of the erythromycin resistance gene of the conjugative transposon Tn1545, Nucl. Acids Res. 18: 3660.Google Scholar
  117. 116.
    Trieu-Cuot, P., Poyart-Salmeron, C., Carlier, C., and Courvalin, P., 1991, Molecular dissection of the transposition mechanism of conjugative transposons from gram-positive cocci, in: Genetics and Molecular Biology of Streptococci, Lactococci, and Enterococci ( G.M. Dunny, P.P. Cleary, and L.L. McKay, eds.), American Society for Microbiology, Washington, DC, pp. 21–27.Google Scholar
  118. 117.
    Vijayakumar, M.N., Priebe, S.D., and Guild, W.R., 1986, Structure of a conjugative el-en-lent in Streptococcus pneumoniae, J. Bacteriol. 166: 978–984.PubMedGoogle Scholar
  119. 118.
    Vijayakumar, M.N., Priebe, S.D., Pozzi, G., Hageman, J.M., and Guild, W.R., 1986, Cloning and physical characterization of chromosomal conjugative elements in streptococci, J. Bacteriol. 166: 972–977.PubMedGoogle Scholar
  120. 119.
    Volk, W.A., Bizzini, B., Jones, K.R., and Macrin, F.L., 1988, Inter-and intrageneric transfer of Tn916 between Streptococcus faecalis and Clostridium tetani, Plasmid 19: 255–259.PubMedCrossRefGoogle Scholar
  121. 120.
    Wanger, A.R., and Dunny, G.M., 1985, Development of a system for genetic and molecular analysis of Streptococcus agalactiae, Res. Vet. Sci. 38: 202–208.PubMedGoogle Scholar
  122. 121.
    Watson, D.A., and Musher, D.M., 1990, Interruption of capsule production in Streptococcus pneumoniae serotype 3 by insertion of transposon Tn916, Infec. Immun. 58: 3135–3138.Google Scholar
  123. 122.
    Weisberg, R.A., and Landy, A., 1983, Site-specific recombination in phage lambda, in: Lambda II ( R.W. Hendrix, J.W. Roberts, F.W. Stahl, and R.A. Weisberg, eds.), Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp. 211–250.Google Scholar
  124. 123.
    Weiser, J.N., and Rubens, C.E., 1987, Transposon mutagenesis of group B streptococcus beta-hemolysin biosynthesis, Infec. Immun. 55: 2314–2316.Google Scholar
  125. 124.
    Whitley, J.C., and Finch, L.R., 1989, Location of sites of transposon Tn916 in the Mycoplasma mycoides genome, J. Bacteriol. 171: 6870–6872.PubMedGoogle Scholar
  126. 125.
    Willetts, N., and Wilkins, B., 1984, Processing of plasmid DNA during bacterial conjugation, Microbiol. Rev. 48: 24–41.Google Scholar
  127. 126.
    Woolley, R.C., Pennock, A., Ashton, R.J., Davies, A., and Young, M., 1989, Transfer of Tn1545 and Tn916 to Clostridium acetobutylicum, Plasmid 22: 169–174.PubMedCrossRefGoogle Scholar
  128. 127.
    Yamamoto, M., Jones, J.M., Senghas, E., Gawron-Burke, C., and Clewell, D.B., 1987, Generation of Tn5 insertions in streptococcal conjugative transposon Tn916, Appl. Environ. Microbiol. 53: 1069–1072.PubMedGoogle Scholar
  129. 128.
    Yin, J.C.P., Krebs, M.P., and Reznikoff, WS., 1988, Effect of dam methylation on Tn5 transposition, J. Mol. Biol. 199: 35–45.PubMedCrossRefGoogle Scholar
  130. 129.
    Yost, S.C., Jones, J.M., and Panee, P.A., 1988, Sequential transposition of Tn916 among Staphylococcus aureus protoplasts, Plasmid 19: 13–20.PubMedCrossRefGoogle Scholar
  131. 130.
    Young, FE., and Mayer, L., 1979, Genetic determinants of microbial resistance to antibiotics, Rev. Infect. Dis. 1: 55–63.Google Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Don B. Clewell
    • 1
  • Susan E. Flannagan
    • 2
  1. 1.Department of Biologic and Materials Sciences, School of Dentistry and Department of Microbiology and Immunology, School of MedicineThe University of MichiganAnn ArborUSA
  2. 2.Department of Biologic and Materials Sciences, School of DentistryThe University of MichiganAnn ArborUSA

Personalised recommendations