Theory of the Stark Effect in Highly Excited Atoms

  • David A. Harmin
Part of the NATO ASI Series book series (NSSB, volume 212)

Abstract

The physics of a Rydberg atom in a uniform dc electric field is a solvable problem [1]. The theory underlying this assertion has several components, which in turn rely on certain approximations, but the machinery as a whole has been put to the experimental test and found to be accurate to a level of up to 10 ppm [2]. The broad assumptions that allow one to investigate atoms, ions, and perhaps even molecules with some success are made in the spirit of multichannel quantum-defect theory (MQDT) [3, 4]. Such a treatment is appropriate to Rydberg systems, wherein one electron is significantly more excited than any of the others. The finer structural aspects of the atom + field system—as reflected in the detailed features of an observable spectrum—are associated with the highly excited electron only. The thrust of the present approach is to obtain a complete description of an excited hydrogen atom in an electric field, and to consider modifications to the atomic spectrum introduced by the presence of a nonhydrogenic atom’s core.

Keywords

Wave Function Coulomb Barrier Excitation Amplitude Schrodinger Equation Stark Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    D. A. Harmin, in Spectral Line Shapes, Vol. 4, ed. R. J. Exton (A. Deepak, Hampton, 1987), p. 73.Google Scholar
  2. [2]
    H. J. Metcalf and T. Beigeman, private communication.Google Scholar
  3. [3]
    M. J. Seaton, Rep. Prog. Phys. 46, 167 (1983).ADSCrossRefGoogle Scholar
  4. [4]
    C. Greene, U. Fano, and G. Strinati, Phys. Rev. A 19, 1485 (1979).ADSCrossRefGoogle Scholar
  5. [5]
    M. H. Nayfeh, this volume, and R. J. Damburg, this volume.Google Scholar
  6. [6]
    R. H. Bell and M. J. Seaton, J. Phys. B 18, 1589 (1985).ADSCrossRefGoogle Scholar
  7. [7]
    M. J. Seaton, J. Phys. B 18, 2111 (1985).ADSCrossRefGoogle Scholar
  8. [8]
    See, e.g., C. M. Brown, S. G. Tilford, and M. L. Ginter, J. Opt. Sci. Am. 67, 584 (1977).ADSCrossRefGoogle Scholar
  9. [9]
    C. M. Lee, Phys. Rev. A 10, 584 (1974).ADSCrossRefGoogle Scholar
  10. [10]
    A. Bommier, D. Delande, and J. C. Gay, this volume.Google Scholar
  11. [11]
    U. Fano, Phys. Rev. A 24, 619 (1981).ADSCrossRefGoogle Scholar
  12. [12]
    E. Luc-Koenig and A. Bachelier, Phys. Rev. Lett. 43, 921 (1979).ADSCrossRefGoogle Scholar
  13. E. Luc-Koenig and A. Bachelier, J. Phys. B 13, 1743 (1980).MathSciNetADSCrossRefGoogle Scholar
  14. E. Luc-Koenig and A. Bachelier, J. Phys. B 13, 1769 (1980). This seminal study was the first to exploit highly accurate numerical solutions of the H-Stark Schrödinger Equation over qualitatively diverse spectral ranges.MathSciNetADSCrossRefGoogle Scholar
  15. [13]
    R. J. Damburg and V. V. Kolosov, J. Phys. B 14, 829 (1981), and references therein.ADSCrossRefGoogle Scholar
  16. [14]
    V. V. Kolosov, J. Phys. B 16, 25 (1983).ADSCrossRefGoogle Scholar
  17. V. V. Kolosov, J. Phys. B 20, 2359 (1987).ADSCrossRefGoogle Scholar
  18. [15]
    D. A. Harmin, Phys. Rev. A 24, 2491 (1981).ADSCrossRefGoogle Scholar
  19. [16]
    V. D. Kondratovich and V. N. Ostrovsky, J. Phys. B 17, 1981 (1984).ADSCrossRefGoogle Scholar
  20. V. D. Kondratovich and V. N. Ostrovsky, J. Phys. B 17, 2011 (1984).ADSCrossRefGoogle Scholar
  21. [17]
    W. L. Glab and M. H. Nayfeh, Phys. Rev. A 31, 530 (1985).ADSCrossRefGoogle Scholar
  22. W. L. Glab, K. Ng, D. Yao, and M. H. Nayfeh, Phys. Rev. A 31, 3677 (1985).ADSCrossRefGoogle Scholar
  23. H. Rottke and K. H. Welge, Phys. Rev. A 33, 301 (1986).ADSCrossRefGoogle Scholar
  24. [18]
    H. J. Silverstone, this volume.Google Scholar
  25. [19]
    M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1970).Google Scholar
  26. [20]
    N. Fröman and P. O. Fröman, JWKB Approximation (North-Holland, Amsterdam, 1965).MATHGoogle Scholar
  27. [21]
    C. H. Greene, A. R. P. Rau, and U. Fano, Phys. Rev. A 26, 2441 (1982).ADSCrossRefGoogle Scholar
  28. [22]
    H. A. Bethe and E. E. Salpeter, Quantum Mechanics of One-and Two-Electron Atoms (Springer, Berlin, 1957).CrossRefMATHGoogle Scholar
  29. [23]
    L. D. Landau and E. M. Lifshitz, Quantum Mechanics (Non-Relativistic Theory) (Pergamon, Oxford, 1976).Google Scholar
  30. [24]
    R. E. Langer, Phys. Rev. 51, 669 (1937).ADSCrossRefGoogle Scholar
  31. [25]
    L. I. Schiff, Quantum Mechanics, 3rd ed., (McGraw-Hill, New York, 1968).Google Scholar
  32. [26]
    F. Robicheaux, U. Fano, M. Cavagnero, and D. A. Harmin, Phys. Rev. A 35, 3619 (1987).MathSciNetADSCrossRefGoogle Scholar
  33. [27]
    U. Fano, Phys. Rev. A 37, 4037 (1988).ADSCrossRefGoogle Scholar
  34. [28]
    D. M. Brink and G. R. Satchler, Angular Momentum, 2nd ed. (Clarendon, Oxford, 1968).Google Scholar
  35. [29]
    R. R. Freeman and D. Kleppner, Phys. Rev. A 14, 1614 (1976).ADSCrossRefGoogle Scholar
  36. [30]
    C. E. Moore, Atomic Energy Levels, NSRDS-NBS 35 (U.S. GPO, Washington, D. C, 1971).Google Scholar
  37. [31]
    C. H. Greene, Phys. Rev. A 20, 656 (1979).ADSCrossRefGoogle Scholar
  38. [32]
    M. L. Zimmerman, M. G. Littman, M. M. Kash, and D. Kleppner, Phys. Rev. A 20, 2251 (1979).ADSCrossRefGoogle Scholar
  39. [33]
    U. Fano and J. W. Cooper, Rev. Mod. Phys. 40, 441 (1968).ADSCrossRefGoogle Scholar
  40. [34]
    U. Fano and A. R. P. Ran, Atomic Collisions and Spectra (Academic, Orlando, 1986).Google Scholar
  41. [35]
    D. A. Harmin, Comments At. Mol. Phys. 15, 281 (1985).Google Scholar
  42. [36]
    U. Fano, Phys. Rev. A 2, 353 (1970).MathSciNetADSCrossRefMATHGoogle Scholar
  43. [37]
    K. T. Lu and U. Fano, Phys. Rev. A 2, 81 (1970).ADSCrossRefGoogle Scholar
  44. K. T. Lu, Phys. Rev. A 4, 579 (1971).ADSCrossRefGoogle Scholar
  45. [38]
    W. E. Cooke and C. L. Cromer, Phys. Rev. A 32, 2725 (1985).ADSCrossRefGoogle Scholar
  46. [39]
    C. M. Lee and K. T. Lu, Phys. Rev. A 8, 1241 (1973).ADSCrossRefGoogle Scholar
  47. C. M. Lee, Phys. Rev. A 10, 584 (1974).ADSCrossRefGoogle Scholar
  48. [40]
    U. Fano, Phys. Rev. 124, 1866 (1961).ADSCrossRefMATHGoogle Scholar
  49. [41]
    U. Fano, Phys. Rev. A 17, 93 (1978); see also Sec. IV of [4] and Sees. 6.3 and 8.6 of [34].MathSciNetADSCrossRefGoogle Scholar
  50. [42]
    See, e.g., Sees. 36-37 of [23] and Sec. 30 of [25].Google Scholar
  51. [43]
    D. Delande and J. C. Gay, J. Phys. B 16, L693 (1983).CrossRefMATHGoogle Scholar
  52. D. Delande and J. C. Gay, J. Phys. B 17, L335 (1984).MathSciNetADSCrossRefGoogle Scholar
  53. [44]
    M. J. Englefield, Group Theory and the Coulomb Problem (Wiley, New York, 1972).MATHGoogle Scholar
  54. [45]
    H. J. Silverstone, Phys. Rev. A 18, 1853 (1978).ADSCrossRefGoogle Scholar
  55. [46]
    D. A. Harmin, Phys. Rev. A 26, 2656 (1982).ADSCrossRefGoogle Scholar
  56. [47]
    D. A. Harmin, unpublished.Google Scholar
  57. [48]
    D. F. Blossey, Phys. Rev. B 2, 3976 (1970). This work contains much original work on the hydrogenic Stark effect—in the context of Wannier excitons!.ADSCrossRefGoogle Scholar
  58. [49]
    D. A. Harmin, Phys. Rev. A 31, 2984 (1985).ADSCrossRefGoogle Scholar
  59. [50]
    S. C. Miller, Jr., and R. H. Good, Jr., Phys. Rev. 91, 174 (1953).MathSciNetADSCrossRefGoogle Scholar
  60. [51]
    See, variously, the following and their references for a variety of approaches to calculating field-ionization rates: R. J. Damburg and V. V. Kolosov, J. Phys. B 12, 2637 (1979).ADSCrossRefGoogle Scholar
  61. D. Farrelly and W. P. Reinhardt, J. Phys. B 16, 2103 (1983).ADSCrossRefGoogle Scholar
  62. V. Franceschini, V. Grecchi, and H. J. Silverstone, Phys. Rev. A 32, 1338 (1985); and [14, 16, 18, 22, 52].ADSCrossRefGoogle Scholar
  63. [52]
    M. Hehenberger, H. V. Mclntosh, and E. Brändas, Phys. Rev. A 10, 1494 (1974).ADSCrossRefGoogle Scholar
  64. [53]
    D. Park, Z. f. Phys. 159, 155 (1960).ADSCrossRefGoogle Scholar
  65. [54]
    D. A. Harmin, in Atomic Excitation and Recombination in External Fields, ed. M. H. Nayfeh and C. W. Clark (Gordon and Breach, New York, 1985), p. 39.Google Scholar
  66. [55]
    R. R. Freeman, N. P. Economou, G. C. Bjorklund, and K. T. Lu, Phys. Rev. Lett. 41, 1463 (1978).ADSCrossRefGoogle Scholar
  67. R. R. Freeman and N. P. Economou, Phys. Rev. A 20, 2356 (1979).ADSCrossRefGoogle Scholar
  68. [56]
    T. S. Luk, L. DiMauro, T. Bergeman, and H. Metcalf, Phys. Rev. Lett. 47, 83 (1981).ADSCrossRefGoogle Scholar
  69. [57]
    W. Sandner, K. A. Safinya, and T. F. Gallagher, Phys. Rev. A 23, 2448 (1981).ADSCrossRefGoogle Scholar
  70. [58]
    S. Feneuille, S. Liberman, E. Luc-Koenig, J. Pinard, and A. Taleb, Phys. Rev. A 25, 2853 (1982).ADSCrossRefGoogle Scholar
  71. [59]
    A. R. P. Rau, J. Phys. B 12, 193 (1979).ADSCrossRefGoogle Scholar
  72. A. R. P. Rau and K. T. Lu, Phys. Rev. A 21, 1057 (1980); see also [15].ADSCrossRefGoogle Scholar
  73. [60]
    W. P. Reinhardt, J. Phys. B 16, L635 (1983).ADSCrossRefGoogle Scholar
  74. [61]
    T. Bergeman, C. Harvey, K. B. Butterfield, H. C. Bryant, D. A. Clark, P. A. M. Gram, D. MacArthur, M. Davis, J. B. Donahue, J. Dayton, and W. W. Smith, Phys. Rev. Lett. 53, 775 (1984).ADSCrossRefGoogle Scholar
  75. [62]
    T. Bergeman, Phys. Rev. Lett. 52, 1685 (1984).ADSCrossRefGoogle Scholar
  76. [63]
    N. L. S. Martin, A. D. Arvin, and K. B. MacAdam, in Atomic Excitation and Recombination in External Fields, 52, 1685, p. 299.Google Scholar
  77. [64]
    K. H. Welge, this volume, and M. H. Nayfeh, this volume.Google Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • David A. Harmin
    • 1
  1. 1.Department of Physics & AstronomyUniversity of KentuckyLexingtonUSA

Personalised recommendations