Scanning Tunneling Microscopy Investigations on Heteroepitaxially Grown Overlayers of Cu-Phthalocyanine on Au(111) Surfaces

  • Torsten Fritz
  • Masahiko Hara
  • Wolfgang Knoll
  • Hiroyuki Sasabe

Abstract

With its ultrahigh resolution, the STM provides an outstanding capability for the structural analysis of the molecular orderings occurring on single crystalline substrates.

We used the STM to image all steps of the multiple heteroepitaxial process, which leads to highly ordered and ultrathin layers of the Cu-phthalocyanine molecules on single crystalline gold films, previously grown on freshly cleaved mica sheets.

The structure of the organic overlayer is commensurable with the Au(111) surface as deduced from both reflection high-energy electron diffraction (RHEED) and STM data. The film shows a novel, nearly quadratic structure which is strongly influenced by the interaction with the Au substrate and different from that in bulky material of Cu-phthalocyanine. For the determination of the structure of organic layers the combination of in situ RHEED and STM is very useful and allows to overcome the limitations of both surface analysis techniques.

Keywords

Scanning Tunneling Microscopy Scanning Tunneling Microscopy Image Reflection High Energy Electron Diffraction Organic Thin Film RHEED Pattern 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Hara, 11. Sasabe, A. Yamada, and A.F. Garito, Epitaxial growth of organic thin films by organic molecular beam epitaxy, Jap. J. Appl. Phys., 28: L306 - L308 (1989).CrossRefGoogle Scholar
  2. 2.
    M. Hara, H. Sasabe, A. Yamada, and A.F. Garito. Observation of heteroepitaxially grown organic ultrathin layers on inorganic substrates by in situ RHEED and by STM, Mat. Res. Soc. Symp. Proc., 159: 57–62 (1990).CrossRefGoogle Scholar
  3. 3.
    H. Saijo, T. Kobayashi, and N. Uyeda. Epitaxial growth of a new polymorph of Cu phthalocyanine on graphite, J. Crys. Growth, 40: 118–124 (1977).CrossRefGoogle Scholar
  4. 4.
    W. Mizutani, Y. Sakakibara, M. Ono, S. Tanishima, K. Ohno, and N. Toshima, Voltage dependent STM, Jap. J. Appl. Phys., 28: L1460 - L1463 (1989).CrossRefGoogle Scholar
  5. 5.
    C. Ludwig, B. Gompf, W. Glatz, J. Petersen, W. Eisenmenger, M. Möbus, U. Zimmermann, and N. Karl, Video-STM, LEED and X-ray diffraction investigations of PTCDA on graphite, Z. Phys. B. Condensed Matter, 88: 397–404 (1992).CrossRefGoogle Scholar
  6. 6.
    H. Sasabe, T. Wada, M. 1-Tara, T. Funmo, Y. Aoyagi, and A. Yamada, Nanostructure fabrication of organic substances by MBE, LBF and ion beam techniques, in: Molecular Electronic Devices, P.L. Carter, ed., Elsevier, Amsterdam, 57–68 (1988).Google Scholar
  7. 7.
    Tada, K. Saiki, and A. Koma, Preparation and characterization of Vanadyl-phthalocyanine ultrathin films grown on KBr and KCl by molecular beam epitaxy, Jap. J. Appl. Phys., 30: L306 - L308 (1991).CrossRefGoogle Scholar
  8. 8.
    M. Möbus, N. Karl, and T. Kobayashi, Structure of perylene-tetracarboxylic dianhydride thin films on alkali halide crystal substiates. J Crys. Growth, 116: 495–504 (1992).CrossRefGoogle Scholar
  9. 9.
    J. C. Buchholz and G. A. Somorjai, The surface structures of phthalocyanine monolayers and vapor-grown films, A low-energy electron diffraction study, J. Chem. Phys., 66: 573–580 (1977).CrossRefGoogle Scholar
  10. 10.
    T. Kobayashi, Y. Fujiyoshi, and N. Uyeda, The observation of molecular orientations in crystal defects and the growth mechanism of thin phthalocyanine films, Acta Cryst., A38: 356–362 (1977).Google Scholar
  11. 11.
    P.H. Lippel, R.J. Wilson, M.D. Miller, Ch. Wall, and S. Chiang, High-resolution imaging of copperphthalocyanine by Scanning-Tunneling Microscopy. Phys. Rev. Lett., 62: 171–174 (1989).CrossRefGoogle Scholar
  12. 12.
    J.E. Frommer, STM and AFM: applications in organic chemistry, Angewandte Chemie, intern. Edit., 31: 1289–1328 (1992).Google Scholar
  13. 13.
    J.K. Spong, H.A. Mizes, L.J. LaComb, M.M. Dovek, J.E. Frommer, and J.S. Foster, Contrast mechanism for organic molecules, Nature, 338: 137–139 (1989).CrossRefGoogle Scholar
  14. 14.
    H. Böttcher, ‘I’. Fritz, and B. Vaupel, Fotochemische Anwendungen von Farbstoffaufdampfschichten, Zeitschrift für Chemie, 29: 368–377 (1989).CrossRefGoogle Scholar
  15. 15.
    H. Böttcher, Specific optical and electrical properties of vacuum-deposited thin films of dyes, J. prakt. Chemie, 334: 14–24 (1992).CrossRefGoogle Scholar
  16. 16.
    H. Böttcher, T. Fritz, and J.D. Wright, Fabrication of evaporated dye films and their application, J. Mater. Chem., 3 (12): 1187–1197 (1993).CrossRefGoogle Scholar
  17. 17.
    D. Wöhrle and D. Meissner, Organic solar cells, Adv. Mater., 3: 129–134 (1991).CrossRefGoogle Scholar
  18. 18.
    J.A. DeRose, T. Thundat, L.A. Nagahara, and S.M. Lindsay, Morphology of epitaxially grown gold on glass and mica, Surface Science, 256: 102–108 (1991).CrossRefGoogle Scholar
  19. 19.
    C.C. Leznoff and A.B.P. Lever, eds., Phthalocyanines, Properties and Applications, VCH Publishers, Inc., New York (1989).Google Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Torsten Fritz
    • 1
  • Masahiko Hara
    • 2
  • Wolfgang Knoll
    • 2
  • Hiroyuki Sasabe
    • 2
  1. 1.Institut fur Angewandte Photophysik TU DresdenDresdenGermany
  2. 2.Frontier Research ProgramRIKEN-InstituteWako SaitamaJapan

Personalised recommendations