Measuring the Mechanical Properties of Preformed, Nanometer-Size Gold Clusters with the Atomic Force Microscope

  • D. M. Schaefer
  • A. Patil
  • R. P. Andres
  • R. Reifenberger

Abstract

An atomic force microscope has been used in the attractive (noncontact) force mode to image individual nanometer-size Au clusters preformed in the gas phase and deposited on a wide variety of atomically flat substrates. Contact imaging modes are shown to provide sufficient lateral forces to dislodge the clusters. Using a noncontact technique, it is possible to reliably image preformed clusters in their as-deposited positions. This capability allows nanoindentation studies to measure the mechanical properties of individual nanometer-size Au clusters supported on highly oriented pyrolitic graphite and permits a measure of the deformation of a nanometer-size cluster as a function of the applied load.

Keywords

Atomic Force Microscope Flat Substrate Bulk Gold Nanoindentation Experiment Noncontact Mode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Seung Bin Park, Ph.D thesis, Purdue University, 1988.Google Scholar
  2. 2.
    E. Choi and R.P. Andres, in: Physics and Chemistry of Small Clusters, P. Jena, 13.K. Rao, and S.N. Ihanna, eds., Plenum Press, New York, 61 (1987).Google Scholar
  3. 3.
    D.M. Schaefer, A. Ramachandra, R.P. Andres, and R. Reifenberger, Imaging nanometer-size metallic clusters with the atomic force ficroscope, Z. Phys. D, 26: 249–252 (1993).Google Scholar
  4. 4.
    N.A. Burnham and R.J. Colton, J. Vac. Sci. Technol. A7: 2906 (1989).CrossRefGoogle Scholar
  5. 5.
    T. Castro, Y.Z. Li, R. Reifenberger, E. Choi, S.B. Park, and R.P. Andres, J. Vac. Sci. Technol. A7: 2845 (1989).CrossRefGoogle Scholar
  6. 6.
    T. Castro, R. Reifenberger, E. Choi, and R.P. Andres, Surf. Sci. 234: 43 (1990).CrossRefGoogle Scholar
  7. 7.
    A.N. Patil, D.Y. Paithankar, N. Otsulka, and R.P. Andres, The minimum energy structure of nanometer-size gold clusters, Z. Phys. D, 26: 135–138 (1993).Google Scholar
  8. 8.
    J. A. Harrison, R. J. Colton, C. T. White, and D. W. Brenner, Surf. Sci. 271: 57 (1992).CrossRefGoogle Scholar
  9. 9.
    Dror Sarid, “Scanning Force Microscopy,” Oxford University Press (1991).Google Scholar
  10. 10.
    J.B. Pethica and W.C. Oliver, Physica Scripta T19, 61 (1987).CrossRefGoogle Scholar
  11. 11.
    D.M. Schaeffer, A.N. Patil, R.P. Andres, R.R. Riefenberger, Nanoindentation of a supported Au cluster, Appl. Phys. Lett., 63: 11, 1492–1496 (1993).CrossRefGoogle Scholar
  12. 12.
    Lawrence E. I. Van Vlack, “Material Science for Engineers,” Addison-Wesley Publishing Company (1971).Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • D. M. Schaefer
    • 1
  • A. Patil
    • 2
  • R. P. Andres
    • 2
  • R. Reifenberger
    • 3
  1. 1.Surface Chemistry BranchNaval Research LaboratoryUSA
  2. 2.School of Chemical EngineeringPurdue UniversityW. LafayetteUSA
  3. 3.Department of PhysicsPurdue UniversityW. LafayetteUSA

Personalised recommendations