Atomic Force and Electron Microscopic Investigations of Lead Selenide Crystals Grown under Monolayers

  • Janos H. Fendler
  • Jianping Yang

Abstract

Lead selenide (PbSe) particulate films, composed of highly oriented, equilateral triangular crystals, have been in situ generated by the exposure of arachidic-acid(AA) monolayer-coated aqueous lead nitrate [Pb(NO3)2] solutions to hydrogen selenide (H2Se). The AA-coated PbSe films, at different stages of their growth, were transferred to solid substrates and characterized by transmission electron microscopy (TEM), electron diffraction, and atomic force microscopy (AFM). The epitaxial growth of PbSe crystals has been rationalized in terms of matching the {111} plane of crystalline PbSe and the (100) plane of the hexagonally close-packed AA monolayer. The parallel alignment of the \( < \bar 110 > \) and \( < 00\bar 1 > \) axes and the perpendicular alignment of the <110> axis to the monolayer have been suggested to be responsible for the observed formation of rod-like PbSe particles. The presence of a negatively charged monolayer has been found to be an essential requirement for the oriented growth of PbSe crystals.

Keywords

Arachidic Acid Particulate Film Lead Selenide Hydrogen Selenide Dioctadecyldimethylammonium Bromide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P.Westbrock and E.W. de Jong, “Biomineralization and Biological Metal Accumulation,” Reidel, Dordrecht, Holland (1983).Google Scholar
  2. 2.
    K. Simkiss and K.M. Wilbur, “Biomineralization,” Academic Press, San Diego (1989).Google Scholar
  3. 3.
    H.A. Lowenstam and S. Weiner, “On Biomineralization,” Oxford University Press, New York (1989).Google Scholar
  4. 4.
    L. Addadi, and S. Weiner, Control and design principles in biological mineralization, Ange w. Chem. Int. Ed. Engl., 31: 153–169 (1992).CrossRefGoogle Scholar
  5. 5.
    J. H. Fendler, Atomic and molecular clusters in membrane mimetic chemistry, Chem. Rev., 87: 877–899 (1987).CrossRefGoogle Scholar
  6. 6.
    G.I..Gaines, Jr., “Insoluble Monolayer at Liquid-Gas Interfaces,” Interscience: New York (1966).Google Scholar
  7. 7.
    A. Ulman, “An Introduction to Ultrathin Organic Films. From Langmuir-Blodgett to Self-Assembly,” Academic Press: New York (1991).Google Scholar
  8. 8.
    K. Kjaer, J. Als-Nielsen, C.A. Helm, P. Tippmann-Krayer, H. Möhwald, Synchrotron X-ray diffraction and reflection studies of arachidic acid monolayers at the air-water interface, J. Phys. Chem., 93: 3200–3206 (1989).CrossRefGoogle Scholar
  9. 9.
    J. Als-Nielsen and H. Möhwald, Synchrotron X-ray scattering studies of Langmuir films, In: “Handbook on Synchrotron Radiation,” Vol. 4, S. Ebashi, M. Koch, and E. Rubinstein, eds. Elsevier Science Publishers, B.V., 1–53 (1991).Google Scholar
  10. 10.
    I. Jacquemain, S.G. Wolf, F. Leveiller, M. Deutch, K. Kjaer, J. Als-Nielsen, M. Lahav, and L. Leiserowitz, Two-dimensional crystallography of amphiphilic molecules at the air-water interface. Angew. Chem. Int. Ed. Engl., 31: 130–152 (1992).CrossRefGoogle Scholar
  11. 11.
    D. Möbius and H. Möhwald, Structural characterization of monolayers at the air-water interfaces, 3: 19–24 (1991).Google Scholar
  12. 12.
    D. Jacquemain, F. Leveiller S.P. Weinbach, L. Leiserowitz, K. Kjaer, and J. Als-Nielsen, Crystal structures of self-aggregates of insoluble aliphatic amphiphatic molecules at the air-water interface. An X-ray synchrotron study, J. Am. Chem. Soc., 113: 7684–7691 (1991).CrossRefGoogle Scholar
  13. 13.
    P. Tippmann-Krayer and H. Möhwald, Precise determination of tilt angles by X-ray diffraction and reflection with arachidic acid monolayers, Langmuir, 7: 2303–2307 (1991).CrossRefGoogle Scholar
  14. 14.
    Handbook of Chemistry and Physics (1983–1984),“ CRC Press, Boca Raton, Florida, B-203.Google Scholar
  15. 15.
    X.K. Zhao, J. Yang, L.D. McCormick, and J.H. Fendler, Epitaxial formation of PbS crystals under arachidic acid monolayers. J. Phys. Chem.,in press.Google Scholar
  16. 16.
    F. Capasso, Bandgap and interface engineering for advanced electronic and photonic devices, MRS Bull., 23–29 (1991).Google Scholar
  17. 17.
    R.P. Andres, R.S. Averback, W.I.. Brown, L.E. Brus, W.A. Goddard, A. Kaldor, S.G. Louie, M. Moskovits, P.S. Percy, S.J. Riley, R.W. Siegel, F. Spaepen, and Y. Wang, Research opportunities on cluster and cluster assembled materials, J. Mater. Res., 4: 704–736 (1989).CrossRefGoogle Scholar
  18. 18.
    M.G. Bawendi, M.L. Steigerwald, and L.E. Brus, Quantum mechanics of large semiconductor clusters, Ann. Rev. Phys. Chem., 41: 477–496 (1990).CrossRefGoogle Scholar
  19. 19.
    L.E. Brus, Semiconductor crystallites, Acc. Chem. Res., 23: 183–188 (1990).CrossRefGoogle Scholar
  20. 20.
    Y. Wang, Nonlinear optical properties of nanometer sized semiconductor clusters, Acc. Chem. Res., 24: 133–139 (1991).CrossRefGoogle Scholar
  21. 21.
    Y. Golan, L. Margulis, I. Rubinstein, and G. Hodes, Epitaxial electrodeposition of CdSe nanocrystals on gold, Langmuir, 8: 749–752 (1992).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Janos H. Fendler
    • 1
  • Jianping Yang
    • 1
  1. 1.Department of ChemistrySyracuse UniversitySyracuseUSA

Personalised recommendations