Scanning Tunneling Microscopy and Atomic Force Microscopy Studies of Conducting Polymer Films

  • Timothy L. Porter

Abstract

The techniques of scanning tunneling microscopy, tunneling spectroscopy, and atomic force microscopy have been used to study the nanometer-scale morphology of conducting polymer films. Scanning tunneling microscopy and atomic force microscopy allow for images to be obtained with molecular or atomic resolution on these surfaces. The technique of tunneling spectroscopy allows for the study of the local electronic structure on surfaces. In this report, we have investigated the surface structure of aniline, hydroxyaniline and borate functionalized aniline thin films.

Keywords

Atomic Force Microscopy Scanning Tunneling Microscopy Scanning Tunneling Microscopy Image Poly Thiophene Tunneling Spectroscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Genies, A. Boylc, M. Lapkowski, C. Tsintavis, Polyanilinc: a historical survey, Synth. Met.36:139-Ig2 (1990).Google Scholar
  2. 2.
    G. Zotti, Electrochemical sensors based on polyconjugated conducting polymers, Synth. Met. 51: 373–382 (1992).CrossRefGoogle Scholar
  3. 3.
    T. Hanawa, H. Hashimoto, S. Kuwabata, H. Yoneyama, Gas sensitivities of electropolymerized polythiophene films, Synth. Met. 30: 173–181 (1989).CrossRefGoogle Scholar
  4. 4.
    A. Boyle, E. Genies, M. Lapkowski, Application of electronic conducting polymers as sensors: polyaniline in the solid state for detection of solvent vapors and polypyrrole for detection of biological ions in solution, Synth. Met. 28: C769 - C774 (1989).CrossRefGoogle Scholar
  5. 5.
    T. Skotheim, P. Hale, H. Karan, Y. Okamoto, L. Samuelson, S. Tripathy, Derivatized Polypyrrole langmuir-blodgett films, applications to bioelectronics, Synth. Met. 41–43: 1433–1437 (1991).CrossRefGoogle Scholar
  6. 6.
    L. Couves, S. Porter, Polypyrrole as a potentiometric glucose sensor, Synth. Met. 28: C761 - C768 (1989).CrossRefGoogle Scholar
  7. 7.
    C. Koopal, R. Czajka, M. Feiters, R. Nolte, B. Ruiter, R. Schasfoort, H. Van Kempen, Polypyrrole microtubles and their use in the construction of a third generation biosensor, Synth. Met. 51: 397–405 (1992).CrossRefGoogle Scholar
  8. 8.
    B. Wheeler, K. Cantrell, G. Caple, J. Francis, S. Grey, S. Vogel, Electrochemical amine sensors using carboxylate functionalized polythiophent films, J. Electrochem. Soc. 136: 27692770 (1989).Google Scholar
  9. 9.
    J. Ginder, A. Epstein, A. MacDiarmid, A. Richter, Insulator to metal transition in polyaniline. Solid State Commun. 63: 97–101 (1987).CrossRefGoogle Scholar
  10. 10.
    J. Travers, F. Genoud, C. Menardo, M. Nechtschein, Polyaniline: a material still under discussion, Synth. Met. 35: 159–168 (1990).CrossRefGoogle Scholar
  11. 11.
    F. Zuo, M. Angelopoulos, A. Epstein, A. MacDiarmid, Transport studies of protonated emeraldine polymer: a granular polymeric metal system, Phys. Rev. B. 36: 3475–3478 (1987).CrossRefGoogle Scholar
  12. 12.
    K. Mizoguchi, C. Menardo, M. Nechtschein, J. Travers, Spin dynamics in the conducting polymer polyaniline, Phys. Rev. Lett. 63: 66–69 (1989).CrossRefGoogle Scholar
  13. 13.
    T. Porter, G. Caple, C. Lee, P. Oden, Surface structural study of poly-hydroxyaniline and aniline(3-aminophenylboronic acid) co-polymer films, J. Vac. Sci. Technol. A10 (4): 606–610 (1992).CrossRefGoogle Scholar
  14. 14.
    T. Porter, G. Caple, C. Lee, B. Wheeler, Scanning tunneling microscopy studies of substituted polyaniline thin films, J. Vac. Sci. Technol. A9 (3): 1452–1456 (1991).CrossRefGoogle Scholar
  15. 15.
    D. Bonnell, M. Angelopoulos, Spatially localized electronic structure in polyaniline by scanning tunneling spectroscopy, Synth. Met. 33: 301–310 (1989).CrossRefGoogle Scholar
  16. 16.
    T. Porter, G. Caple, P. Oden, Surface structural study of poly-hydroxyaniline, Surf Sci. 259: 221–230 (1991).CrossRefGoogle Scholar
  17. 17.
    T. Porter, G. Caple, R. Dillingham, T. Jones, C. Lee, B. Wheeler, Scanning tunneling microscopy and x-ray photoelectron spectroscopy studies of borate substituted polyaniline, Synth. Met. 40: 187–196 (1991).CrossRefGoogle Scholar
  18. 18.
    T. Porter, G. Caple, S. Jeffers, R. Swift, B. Wheeler, Scanning tunneling microscopy studies of polythiophene and poly-3-bromothiophene films, Surf. Sci. 238: L433 - L438 (1990).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Timothy L. Porter
    • 1
  1. 1.Department of PhysicsNorthern Arizona UniversityFlagstaffUSA

Personalised recommendations