Scanning Tunneling Microscopy and Spectroscopy of Carbon Nanotubes

  • W. Rivera
  • J. M. Perez
  • R. S. Ruoff
  • D. C. Lorents
  • R. Malhotra
  • S. Lim
  • Y. G. Rho
  • E. G. Jacobs
  • R. F. Pinizzotto

Abstract

Scanning tunneling microscopy (STM) and spectroscopy have been used to obtain images and current-voltage (I–V) curves of carbon nanotubes. The nanotubes are 5–7 nm in diameter and up to 1 in length. The I–V curves indicate that carbon nanotubes with diameters of approximately 5.0 nm are metallic. This observation is consistent with recent theoretical predictions concerning the electronic structure of carbon nanotubes in relation to their diameter and helicity. Using STM, we also observe graphene sheets in the carbon soot that is produced during the arc discharge. The STM images of nanotubes are in good agreement with transmission electron microscopy images. Potential applications of carbon nanotubes include novel nanometer-size electronic devices and fiber-reinforced materials.

Keywords

Carbon Nanotubes Scanning Tunneling Microscopy Tunneling Current Scanning Tunneling Microscopy Image Carbon Soot 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Iijima, Helical microtubules of graphitic carbon, Nature 354: 56–58 (1991).CrossRefGoogle Scholar
  2. 2.
    T. Ebbesen and P. Ajayan, Large-scale synthesis of carbon nanotubes, Nature 358: 220–222 (1992).CrossRefGoogle Scholar
  3. 3.
    M. Jose-Yacaman, M. Miki-Yoshida, and L. Rendon, Catalytic growth of carbon microtubules with fullerene structure, Appl. Phys. Lett. 62: 657–659 (1993).CrossRefGoogle Scholar
  4. 4.
    See, for example, Materials Research Society Meeting, Spring 1993, Symposium on Fullerenes and Related Materials.Google Scholar
  5. 5.
    M. Regueiro, P. Monceau, and J. Hodeau, Crushing C65 to diamond at room temperature, Nature 355: 237–239 (1992).CrossRefGoogle Scholar
  6. 6.
    Private communication, Ulvick Industries, Inc., Houston, TX.Google Scholar
  7. 7.
    J. Mintmire, B. Dunlap, and C. White, Are fullerene tubules metallic? Phys. Rev. Lett. 68: 631–634 (1992).CrossRefGoogle Scholar
  8. 8.
    R. Saito, M. Fujita, G. Dresselhaus, and M. Dresselhaus, Electronic structure of chiral tubules, Appl. Phys. Lett. 60: 2204–2206 (1992).CrossRefGoogle Scholar
  9. 9.
    Burleigh Instruments, Inc., Rochester, NY.Google Scholar
  10. 10.
    M. Gallagher, D. Chen, B. Jacobsen, D. Sarid, L. Lamb, F. Tinker, J. Jiao, D. Huffman, S. Seraphin, and D. Zhou, Characterization of carbon nanotubes by scanning probe microscopy, Surf Sci. Lett. 281: L335 - L340 (1993).CrossRefGoogle Scholar
  11. 11.
    R. Feenstra, Scanning tunneling microscopy: semiconductor surfaces, adsorption, and cpitaxy, in: “Scanning Tunneling Microscopy and Related Methods,” R.J. Behm, N. Garcia, and H. Rohrer, eds., Boston: Kluwer, 211–240 (1990).Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • W. Rivera
    • 1
    • 2
  • J. M. Perez
    • 1
  • R. S. Ruoff
    • 3
  • D. C. Lorents
    • 3
  • R. Malhotra
    • 3
  • S. Lim
    • 4
  • Y. G. Rho
    • 4
  • E. G. Jacobs
    • 4
  • R. F. Pinizzotto
    • 4
  1. 1.Department of PhysicsUniversity of North TexasDentonUSA
  2. 2.Universidad del CaucaPopayánColombia
  3. 3.SRI InternationalMenlo ParkUSA
  4. 4.Center for Materials CharacterizationUniversity of North TexasDentonUSA

Personalised recommendations