Neuropsychological Diagnosis with Children

Actuarial and Clinical Models
  • W. Grant Willis
Part of the Critical Issues in Neuropsychology book series (CINP)

Abstract

Neuropsychological diagnosis with children is a highly specialized endeavor. It draws heavily from disciplines that encompass neuropsychology, functional psychodiagnosis, and pediatrics. It also departs from these established disciplines in some important ways. For example, unique issues in child neuropsychological diagnosis such as referral bias, assessment technique, and poor taxonomy distinguish it from functional psychodiagnosis, especially with adults. These issues, which serve to militate against high degrees of diagnostic accuracy, have been well articulated by Achenbach (1985), Fletcher and Taylor (1984), and Rapoport and Ismond (1984).

Keywords

Assessment Data Clinical Model Specific Learning Disability Posterior Odds Interpretive Strategy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aaron, P. G. (1981). Diagnosis and remediation of learning disabilities in children—A neuropsychological key approach. In G. W. Hynd & J. E. Obrzut (Eds.), Neuropsychological assessment and the school-age child (pp. 303–333). New York: Grime and Stratton.Google Scholar
  2. Achenbach, T. M. (1985). Assessment and taxonomy of child and adolescent psycho-pathology. Beverly Hills, CA: Sage.Google Scholar
  3. Achenbach, T. M., & Edelbrock, C. S. (1978). The classification of child psychopathology: A review and analysis of empirical efforts. Psychological Bulletin, 85, 1275–1301.PubMedCrossRefGoogle Scholar
  4. American Psychiatric Association. (1987). Diagnostic and statistical manual of mental disorders (3rd ed., rev.). Washington, DC: Author.Google Scholar
  5. Arkes, H. R. (1981). Impediments to accurate clinical judgment and possible ways to minimize their impact. Journal of Consulting and Clinical Psychology, 49, 323–330.PubMedCrossRefGoogle Scholar
  6. Arkes, H. R., & Harkness, A. R. (1980). The effect of making a diagnosis on subsequent recognition of symptoms. Journal of Experimental Psychology: Human Learning and Memory, 6, 568–575.CrossRefGoogle Scholar
  7. Arkes, H. R., & Harkness, A. R. (1983). Estimates of contingency between two dichotomous variables. Journal of Experimental Psychology: General, 112, 117–135.CrossRefGoogle Scholar
  8. Black, F. W. (1976). Cognitive, academic, and behavioral findings in children with suspected and documented neurological dysfunction. Journal of Learning Disabilities, 9, 182–187.CrossRefGoogle Scholar
  9. Cattin, P. (1980). Note on the estimation of the squared cross-validated multiple correlation of a regression model. Psychological Bulletin, 87, 63–65.CrossRefGoogle Scholar
  10. Chapman, L. (1967). Illusory correlation in observational report. Journal of Verbal Learning and Verbal Behavior, 6, 151–155.CrossRefGoogle Scholar
  11. Chapman, L., & Chapman, J. (1967). Genis of popular but erroneous psychodiagnostic observations. Journal of Abnormal Psychology, 72, 193–204.PubMedCrossRefGoogle Scholar
  12. Chapman, L., & Chapman, J. (1969). Illusory correlation as an obstacle to the use of valid psychodiagnostic signs. Journal of Abnormal Psychology, 74, 271–280.PubMedCrossRefGoogle Scholar
  13. Elstein, A. S., Shulman, A. S., & Sprafka, S. A. (1978). Medical problem solving: An analysis of clinical reasoning. Cambridge, MA: Harvard University Press.Google Scholar
  14. Fisk, J. L., & Rourke, B. P. (1979). Identification of subtypes of learning-disabled children at three age levels: A neuropsychological, multivariate approach. Journal of Clinical Neuropsychology, 1, 289–310.CrossRefGoogle Scholar
  15. Fisk, J. L., & Rourke, B. P. (1983). Neuropsychological subtyping of learning-disabled children: History, methods, implications. Journal of Learning Disabilities, 16, 529–531.PubMedCrossRefGoogle Scholar
  16. Fletcher, J. M., Rice, W. J., & Ray, R. M. (1978). Linear discriminant analysis in neuropsychological research: Some uses and abuses. Cortex, 14, 564–577.PubMedGoogle Scholar
  17. Fletcher, J. M., Smidt, R. K., & Satz, P. (1979). Discriminant function strategies for the kindergarten prediction of reading achievement. Journal of Clinical Neuropsychology, 1, 151–166.CrossRefGoogle Scholar
  18. Fletcher, J. M., & Taylor, H. G. (1984). Neuropsychological approaches to children: Towards a developmental neuropsychology. Journal of Clinical Neuropsychology, 6, 39–56.PubMedCrossRefGoogle Scholar
  19. Goldberg, L. R., & Werts, C. E. (1966). The reliability of clinical judgments: A multitrait-multimethod approach. Journal of Consulting Psychology, 30, 199–206.PubMedCrossRefGoogle Scholar
  20. Golding, S. G., & Rorer, L. (1972). Illusory correlation and subjective judgment. Journal of Abnormal Psychology, 80, 249–260.CrossRefGoogle Scholar
  21. Goldstein, G., & Shelly, C. H. (1973). Univariate vs. multivariate analysis in neuropsychological test assessment of lateralized brain damage. Cortex, 9, 204–216.PubMedGoogle Scholar
  22. Herzberg, P. A. (1969). The parameters of cross-validation. Psychometrika, Monograph Supplement, No. 16.Google Scholar
  23. Holroyd, J., & Wright, F. (1965). Neurological implications of WISC verbal-performance discrepancies in a psychiatric setting. Journal of Consulting Psychology, 29, 206–212.PubMedCrossRefGoogle Scholar
  24. Hooper, S. R., & Willis, W. G. (in press). Learning disability subtyping: Neuropsychological foundations, conceptual models, and issues in clinical differentiation. New York: Plenum.Google Scholar
  25. Huberty, C. J. (1975). Discriminant analysis. Review of Educational Research, 45, 543–598.Google Scholar
  26. Huberty, C. J. (1984). Issues in the use and interpretation of discriminant analysis. Psychological Bulletin, 95, 156–171.CrossRefGoogle Scholar
  27. Jensen, A. (1973). Education and group differences. New York: Harper & Row.Google Scholar
  28. Kaufman, A. S., & Kaufman, N. L. (1983). Kaufman Assessment Battery for Children. Circle Pines, MN: American Guidance Service.Google Scholar
  29. Kurtz, R. M., & Garfield, S. L. (1978). Illusory correlation: A further exploration of Chapman’s paradigm. Journal of Consulting and Clinical Psychology, 46, 1009–1015.PubMedCrossRefGoogle Scholar
  30. Lachenbruch, P. A. (1967). An almost unbiased method of obtaining confidence intervals for the probability of misclassification in discriminant analysis. Biometrics, 23, 639–645.PubMedCrossRefGoogle Scholar
  31. Lueger, R. J., & Petzel, T. P. (1979). Illusory correlation in clinical judgment: Effects of amount of information to be processed. Journal of Consulting and Clinical Psychology, 47, 1120–1121.CrossRefGoogle Scholar
  32. Lyon, R., Stewart, N., & Freedman, D. (1982). Neuropsychological characteristics of empirically derived subgroups of learning disabled readers. Journal of Clinical Neuropsychology, 4, 343–365.PubMedCrossRefGoogle Scholar
  33. McDermott, P. A. (1981). Sources of error in the psychoeducational diagnosis of children. Journal of School Psychology, 19, 31–44.CrossRefGoogle Scholar
  34. McDermott, P. A. (1982). Actuarial assessment for the grouping and classification of school children. In C. R. Reynolds & T. B. Gutkin (Eds.), The handbook for school psychology (pp. 243–272). New York: Wiley.Google Scholar
  35. McDermott, P. A., & Watkins, M. W. (1985). McDermott Multidimensional Assessment of Children. Cleveland: OH: Psychological Corporation.Google Scholar
  36. Meehl, P. E. (1954). Clinical versus statistical prediction: A theoretical analysis and a review of the evidence. Minneapolis: University of Minnesota Press.CrossRefGoogle Scholar
  37. Meehl, P. E. (1973). Psychodiagnosis: Selected papers. Minneapolis: University of Minnesota Press.Google Scholar
  38. Meehl, P. E., & Rosen, A. (1955). Antecedent probability and the efficiency of psychometric signs, patterns, or cutting scores. Psychological Bulletin, 52, 194–216.PubMedCrossRefGoogle Scholar
  39. Mercer, J. R., & Lewis, J. F. (1978). System of Multicultural Pluralistic Assessment. New York: Psychological Corporation.Google Scholar
  40. Mitchell, B. (1967). Predictive validity of the Metropolitan Readiness Test and the Murphy-Durrell Reading Readiness Analysis for white and negro pupils. Educational and Psychological Measurement, 27, 1047–1054.Google Scholar
  41. Mosier, C. I. (1951). Problems and designs of cross-validation. Educational and Psychological Measurement, 11, 5–11.CrossRefGoogle Scholar
  42. Nisbett, R. E., & Ross, L. (1980). Human inference: Strategies and shortcomings of social judgment. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
  43. Obrzut, J. E., Hynd, G. W., & Obrzut, A. (1983). Neuropsychological assessment of learning disabilities: A discriminant analysis. Journal of Experimental Child Psychology, 35, 46–55.PubMedCrossRefGoogle Scholar
  44. Pedhazur, E. J. (1982). Multiple regression in behavioral research (2nd ed.). New York: Holt, Rinehart & Winston.Google Scholar
  45. Phelan, J. G. (1964). Rationale employed by clinical psychologists in diagnostic judgment. Journal of Clinical Psychology, 20, 454–458.PubMedCrossRefGoogle Scholar
  46. Rapoport, J. L., & Ismond, D. R. (1984). DSM-III training guide for diagnosis of childhood disorders. New York: Brunner/Mazel.Google Scholar
  47. Reitan, R. M. (1984). An impairment index of brain functions in children. Perceptual and Motor Skills, 58, 875–881.PubMedCrossRefGoogle Scholar
  48. Reitan, R. M., & Davison, L. A. (Eds.). (1974). Clinical neuropsychology: Current status and applications. Washington, DC: V. H. Winston.Google Scholar
  49. Reynolds, C. R. (1982). Determining statistically reliable strengths and weaknesses in the performance of single individuals on the Luria-Nebraska Neuropsychological Battery. Journal of Consulting and Clinical Psychology, 50, 525–529.PubMedCrossRefGoogle Scholar
  50. Reynolds, C. R., & Clark, J. H. (1983). Assessment of cognitive abilities. In K. D. Paget & B. Bracken (Eds.), The psychoeducationa J assessment of preschool children (pp. 163–189). New York: Grune and Stratton.Google Scholar
  51. Reynolds, C. R., & Gutkin, T. B. (1981). Statistics for the interpretation of Bannatyne reorganization of WPPSI subtests. Journal of Learning Disabilities, 14, 446–467.Google Scholar
  52. Reynolds, C. R., & Kaufman, A. S. (1985). Clinical assessment of children’s intelligence with the Wechsler scales. In B. B. Wolman (Ed.), Handhook of intelligence: Theories, measurements, and applications (pp. 601–661). New York: Wiley.Google Scholar
  53. Rosen, G. D., Sherman, G. F., & Galaburda, A. M. (1986). Biological interactions in dyslexia (pp. 155–173). In J. E. Obrzut & G. W. Hynd (Eds.), Child neuropsychology: Vol. 1. Theory and research. Orlando, FL: Academic Press.Google Scholar
  54. Sattler, J. M. (1982). Assessment of children’s inte Jjigence and special abilities (2nd ed.). Boston: Allyn & Bacon.Google Scholar
  55. Sattler, J. M. (1988). Assessment of children (3rd ed.). San Diego, CA: Jerome M. Sattler.Google Scholar
  56. Scarr-Salapatek, S. (1971). Race, social class, and IQ. Science, 174, 1285–1295.PubMedCrossRefGoogle Scholar
  57. Selz, M. (1981). Halstead-Reitan neuropsychological test batteries for children. In G. W. Hynd & J. E. Obrzut (Eds.), Neuropsychological assessment and the school-age child (pp. 195–235). New York: Grune and Stratton.Google Scholar
  58. Selz, M., & Reitan, R. M. (1979). Rules for neuropsychological diagnosis: Classification of brain function in older children. Journal of Consulting and Clinical Psychology, 47, 258–264.PubMedCrossRefGoogle Scholar
  59. Shepard, L. A., Smith, M. L., & Vojir, C. P. (1983). Characteristics of pupils identified as learning disabled. American EducationaJ Research Journal, 20, 309–331.CrossRefGoogle Scholar
  60. Spitzer, R. L., Skodol, A. E., Gibbon, M., & Williams, J. B. W. (1981). DSM-III case book. Washington. DC: American Psychiatric Association.Google Scholar
  61. Starr, J. G., & Katkin, E. (1969). The clinician as an aberrant actuary: Illusory correlation and the Incomplete Sentences Blank. Journal of Abnormal Psychology, 74, 670–675.CrossRefGoogle Scholar
  62. Thorndike, R. L. (1982). Applied psychometrics. Boston: Houghton Mifflin.Google Scholar
  63. Tryon, R. C., & Bailey, D. E. (1970). Cluster analysis. New York: McGraw-Hill.Google Scholar
  64. Tversky, A., & Kahneman, D. (1973). Availability: A heuristic for judging frequency and probability. Cognitive Psychology, 5, 207–232.CrossRefGoogle Scholar
  65. Wallach, M. S., & Schoof, K. (1965). Reliability of degree of disturbance rating. Journal of Clinical Psychology, 21, 273–275.PubMedCrossRefGoogle Scholar
  66. Wechsler, D. (1974). Wechsler Intelligence Scale for Children-Revised. New York: Psychological Corporation.Google Scholar
  67. Willis, W. G. (1984). Reanalysis of an actuarial approach to neuropsychological diagnosis in consideration of base rates. Journal of Consulting and Clinical Psychology, 52, 567–569.PubMedCrossRefGoogle Scholar
  68. Willson, V. L., & Reynolds, C. R. (1982). Methodological and statistical problems in determining membership in clinical populations. Clinical Neuropsychology, 4, 134–138.Google Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • W. Grant Willis
    • 1
  1. 1.Department of PsychologyUniversity of Rhode IslandKingstonUSA

Personalised recommendations