Neuropsychology of the Developing Brain

Implications for Neuropsychological Assessment
  • Anthony H. Risser
  • Dorothy Edgell
Part of the Critical Issues in Neuropsychology book series (CINP)

Abstract

Childhood neuropsychological assessment contributes interpretative data on the relation between overt behavior and the functional systems of the child’s brain. These data are obtained in the expectation that they will be useful in interpretating the significance of the child’s manifest problems. The assessment provides a comprehensive analysis of test-delimited neuropsychological systems, such as language comprehension or visual short-term memory, and of the integrated functioning of these systems. Neuropsychological interpretation occurs in a diagnostic milieu that also might include clinical neurological, neuroimaging, electrophysiological, psychological, and educational data.

Keywords

Brain Damage Developmental Dyslexia Child Neurology Neurological Soft Sign Soft Sign 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, R. D. & Victor, M. (1985). Principles of neurology (3rd ed.). New York: McGraw-Hill.Google Scholar
  2. Annegers, J. F., Grabow, J. D., Kurland, L. T., & Laws, E. R. (1980). The incidence, causes, and secular trends of head trauma in Olmsted County, Minnesota, 1935–1974. Neurology, 30, 912–919.PubMedGoogle Scholar
  3. Bakker, D. J. (1984). The brain as a dependent variable. Journal of Clinical Neuropsychology, 6, 1–16.PubMedGoogle Scholar
  4. Barkley, R. A. (1981). Hyperactive children: A handbook for diagnosis and treatment. New York: Guilford Press.Google Scholar
  5. Benton, A. (1975). Developmental dyslexia: Neurological aspects. Advances in Neurology, 7, 1–27.PubMedGoogle Scholar
  6. Benton, A. (1982). Child neuropsychology: Retrospect and prospect. In J. de Wit & A. Benton (Eds.), Perspectives in child study: Integration of theory and practice (pp. 41–61). Lisse: Swets and Zeitlinger.Google Scholar
  7. Boll, T. J., & Barth, J. T. (1981). Neuropsychology of brain damage in children. In S. B. Filskov & T. J. Boll (Eds.), Handbook of clinical neuropsychology (pp. 418–452). New York: Wiley Press.Google Scholar
  8. Bronson, G. (1982). Structure, status and characteristics of the nervous system at birth. In P. Stratton (Ed.), Psychobiology of the human newborn (pp. 99–114). New York: Wiley Press.Google Scholar
  9. Bryden, M. P. (1982). Laterality: Functional asymmetry in the intact brain. New York: Academic Press.Google Scholar
  10. Chelune, G. J., & Edwards, P. (1981). Early brain lesions: Ontogenetic environmental considerations. Journal of Consulting and Clinical Psychology, 49, 777–790.PubMedGoogle Scholar
  11. Chi, J. G., Dooling, E. C., & Gilles, F. H. (1977). Gyral development of the human brain. Annals of Neurology, 1, 86–93.PubMedGoogle Scholar
  12. Corballis, M. C., & Morgan, M. J. (1978). On the biological basis of human laterality: I. Evidence for a maturational left-right gradient. Behavioral and Brain Sciences, 2, 261–336.Google Scholar
  13. Cotman, C. W., & Nieto-Sampedro, M. (1982). Brain function, synapse renewal, and plasticity. Annual Review of Psychology, 33, 371–401.PubMedGoogle Scholar
  14. Cotman, C. W., & Nietro-Sampedro, M. (1984). Cell biology of synaptic plasticity. Science, 225, 1287–1294.PubMedGoogle Scholar
  15. Cowan, W. M., Fawcett, J. W., O’Leary, D. D. M., & Stanfield, B. B. (1984). Regressive events in neurogenesis. Science, 225, 1258–1265.PubMedGoogle Scholar
  16. Denckla, M. B. (1978). Minimal brain dysfunction. In J. S. Chall & A. F. Mirsky (Eds.), Education and the brain, 77th yearbook of the National Society for the Study of Education (pp. 223–268). Chicago: University of Chicago Press.Google Scholar
  17. DiSimoni, F. (1978). The Token Test for Children, manual. Hingham, MA: Teaching Resources Corp.Google Scholar
  18. Dobbing, J., & Sands, J. (1971). Vulnerability of developing brain: IX. The effect of nutritional growth retardation on the timing of the brain growth spurt. Biology of the Neonate, 19, 363–378.PubMedGoogle Scholar
  19. Dobbing, J., & Smart, J. L. (1974). Vulnerability of developing brain and behavior. British Medical Journal, 30, 164–168.Google Scholar
  20. Elliott, H. (1969). Textbook of anatomy. Philadelphia: Lippincott.Google Scholar
  21. Flechsig, P. (1901). Developmental (myelogenetic) localization in the cerebral cortex of the human subject. Lancet, 2, 1027–1029.Google Scholar
  22. Fuller, P. W., Guthrie, R. D., & Alvord, E. C. (1983). A proposed neuropathological basis for learning disabilities in children born prematurely. Developmental Medicine and Child Neurology, 25, 214–231.PubMedGoogle Scholar
  23. Gaddes, W. H. (1985). Learning disabilities and brain function: A neuropsychological approach (2nd ed.). New York: Springer-Verlag.Google Scholar
  24. Gaddes, W. H., & Crockett, D. J. (1973). The Spreen-Benton aphasia tests, normative data as a measure of normal language development (Research Monograph No. 25). Victoria, BC: University of Victoria.Google Scholar
  25. Galaburda, A. M., & Eidelberg, D. (1982). Symmetry and asymmetry in the human posterior thalamus. II. Thalamic lesions in a case of developmental dyslexia. Archives of Neurology, 39, 333–336.PubMedGoogle Scholar
  26. Galaburda, A. M., & Kemper, T. L. (1979). Cytoarchitectonic abnormalities in developmental dyslexia: A case study. Annals of Neurology, 6, 94–100.PubMedGoogle Scholar
  27. Galaburda, A. M., Sherman, G. F., Rosen, G. D., Aboitiz, F., & Geschwind, N. (1985). Developmental dyslexia: Four consecutive patients with cortical anomalies. Annals of Neurology, 18, 222–233.PubMedGoogle Scholar
  28. Gazzaniga, M. S., Stein, D., & Volpe, E. T. (1979). Functional neuroscience. New York: Harper & Row.Google Scholar
  29. Geschwind, N., & Galaburda, A. M. (1985a). Cerebral lateralization: Biological mechanisms, associations, and pathology. A hypothesis and a program for research. Archives of Neurology, 42, 428–459.PubMedGoogle Scholar
  30. Geschwind, N., & Galaburda, A. M. (1985b). Cerebral lateralization: Biological mechanisms, associations, and pathology. A hypothesis and a program for research. Archives of Neurology, 42, 521–552.PubMedGoogle Scholar
  31. Geschwind, N., & Galaburda, A. M. (1985c). Cerebral lateralization: Biological mechanisms, associations, and pathology. A hypothesis and a program for research. Archives of Neurology, 42, 634–654.PubMedGoogle Scholar
  32. Goddard-Finegold, J. (1984). Periventricular, intraventricular hemorrhages in the premature newborn: Update on pathologic features, pathogenesis, and possible means of prevention. Archives of Neurology, 41, 766–771.PubMedGoogle Scholar
  33. Goldman, P. S. (1979). Development and plasticity of frontal association cortex in the infrahuman primate. In C. L. Ludlow & M. E. Doran-Quine (Eds.), The neurological bases of language disorders in children: Methods and directions for research (NIH Publication No. 79-440) (pp. 1–16). Washington, DC: U.S. Government Printing Office.Google Scholar
  34. Goldman, P. S., & Galkin, T. W. (1978). Prenatal removal of frontal association cortex in the fetal rhesus monkey: Anatomical and functional consequences in postnatal life. Brain Research, 152, 451–485.PubMedGoogle Scholar
  35. Goldman-Rakic, P., Isserhoff, A., Schwartz, M. L., & Bugbee, N. M. (1983). The neurobiology of cognitive development. In M. M. Haith & J. J. Campos (Eds.), Infancy and developmental psychobiology; Vol. 2 of P. H. Müssen (Ed.), Handbook of child psychology (4th ed., pp. 281–344). New York: Wiley Press.Google Scholar
  36. Greenough, W. T., & Juraska, J. M. (1979). Experience-induced changes in brain fine structure: Their behavioral implications. In M. E. Hahn, C. Jensen, & B. C. Dudek (Eds.), Development and evolution of brain size (pp. 295–320). New York: Academic Press.Google Scholar
  37. Haslam, R. H. A., Dalby, J. T., Johns, R. D., & Rademaker, A. W. (1981). Cerebral asymmetry in developmental dyslexia. Archives of Neurology, 38, 679–682.PubMedGoogle Scholar
  38. Hebb, D. O. (1949). Organization of behavior. New York: Wiley Press.Google Scholar
  39. Hier, D. B., LeMay, M., Rosenberger, P. B., & Perlo, V. P. (1978). Developmental dyslexia: Evidence for a subgroup with a reversal of cerebral asymmetry. Archives of Neurology, 35, 90–92.PubMedGoogle Scholar
  40. Isaacson, R. L. (1975). The myth of recovery from early brain damage. In N. R. Ellis (Ed.), Aberrant development in infancy (pp. 1–25). Potomac: Erlbaum.Google Scholar
  41. Jacobsen, C. F. (1936). Studies of cerebral function in primates. Comparative Psychological Monographs, 13, 1–68.Google Scholar
  42. Jacobson, M. (1978). Developmental neurobiology (2nd ed.). New York: Plenum Press.Google Scholar
  43. Johnson, M. A., Pennock, J. M., Bydder, G. M., Dubowitz, L. M. S., Thomas, D. J., & Young, I. R. (1987). Serial MR imaging in neonatal cerebral injury. American Journal of Neuroradiology, 8, 83–92.PubMedGoogle Scholar
  44. Kandel, E. R. & Schwartz, J. H. (1981). Principles of neural science. New York: Elsevier/North-Holland.Google Scholar
  45. Kennard, M. A. (1940). Relation of age to motor impairment in man and subhuman primates. Archives of Neurology and Psychiatry, 44, 377–397.Google Scholar
  46. Kennard, M. A. (1942). Cortical reorganization of motor function: Studies on series of monkeys of different ages from infancy to maturity. Archives of Neurology and Psychiatry, 47, 227–240.Google Scholar
  47. Kitchen, W. H., Rickards, W. H., Ryan, M. M., Ford, G. W., Lissenden, J. V., & Boyle, L. W. (1986). Improved outcome to two years of very low birthweight infants: Fact or artifact. Developmental Medicine and Child Neurology, 28, 579–588.PubMedGoogle Scholar
  48. Knights, R. M., & Bakker, D. J. (Eds.). (1976). The neuropsychology of learning disorders: Theoretical approaches. Baltimore: University Park Press.Google Scholar
  49. Knobloch, H., & Pasamanick, B. (1966). Prospective studies on the epidemiology of reproductive casualty: Methods, findings, and some implications. Merrill-Palmer Quarterly of Behaviour and Development, 12, 27–43.Google Scholar
  50. Kopp, C. B. (1983). Risk factors in development. In M. M. Haith & J. J. Campos (Eds.), Infancy and developmental psychohiology; Vol. 2 of P. H. Mussen (Ed.), Handbook of child psychology (4th ed., pp. 1081–1188). New York: Wiley Press.Google Scholar
  51. Kopp, C. B., & Parmelee, A. H. (1979). Prenatal and perinatal influences on infant behavior. In J. Osofsky (Ed.), Handbook on infant behavior (pp. 29–74). New York: Wiley-Interscience.Google Scholar
  52. LeCours, A. R. (1975). Myelogenetic correlates of the development of speech and language. In E. H. Lenneberg & E. Lenneberg (Eds.), Foundations of language development: A multidisciplinary approach (Vol. 1, pp. 121–135). New York: Academic Press.Google Scholar
  53. Lee, B. C. P., Lipper, E., Nass, R., Ehrlich, M. E., deCiccio-Bloom, E., & Auld, P. A. M. (1986). MRI of the central nervous system in neonates and young children. American Journal of Neuroradiology, 7, 605–616.PubMedGoogle Scholar
  54. LeMay, M. (1981). Are there radiological changes in the brains of individuals with dyslexia? Bulletin of the Orton Society, 31, 135–141.Google Scholar
  55. Lemire, R. J., Loeser, J. D., Leech, R. W., & Alvord, E. C. (1975). Normal and abnormal development of the human nervous system. New York: Harper & Row.Google Scholar
  56. Levene, M. I., & Dubowitz, L. M. S. (1982). Low-birth-weight babies long-term follow-up. British Journal of Hospital Medicine, 24, 487–491.Google Scholar
  57. Lezak, M. (1983). Neuropsychological assessment (2nd ed.). New York: Oxford Press.Google Scholar
  58. Lund, R. D. (1978). Development and plasticity of the brain: An introduction. New York: Oxford Press.Google Scholar
  59. Luria, A. R. (1973). The working brain: An introduction to neuropsychology. Middlesex: Penguin Press.Google Scholar
  60. McArdle, C. B., Richardson, C. J., Nicholas, D. A., Mirfakhree, M., Hayden, C. K., & Amparo, E. G. (1987). Developmental features of the neonatal brain: MR imaging: Part I. Gray-white matter differentiation and myelination. Radiology, 162, 223–229.PubMedGoogle Scholar
  61. McCarthy, D. (1972). McCarthy scales of children’s abilities. New York: Psychological Corporation.Google Scholar
  62. Menkes, J. H. (1985). Textbook of child neurology (3rd ed.). Philadelphia: Lea & Febiger.Google Scholar
  63. Menyuk, P. (1978). Linguistic problems in children with developmental dysphasia. In M. A. Wyke (Ed.), Developmental dysphasia (pp. 135–157). London: Academic Press.Google Scholar
  64. Naeye, R. L., & Peters, E. C. (1987). Antenatal hypoxia and low IQ values. American Journal of Diseases of Childhood, 141, 50–54.Google Scholar
  65. Nichols, P., & Chen, T. (1981). Minimal brain dysfunction: A prospective study. Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
  66. Oppenheim, R. W. (1981). Ontogenetic adaptations and retrogressive processes in the development of the nervous system and behavior: A neuroembryological perspective. In K. J. Connolly & H. F. R. Prechtl (Eds.), Maturation and development: Biological and psychological perspectives (pp. 73–101). Philadelphia: Lippincott.Google Scholar
  67. Pape, K. E., & Fitzhardinge, P. M. (1981). Perinatal damage to the developing brain. In A. Milusky, E. A. Friedman, & L. Gluck (Eds.), Advances in perinatal medicine (Vol. 1, pp. 45–86). New York: Plenum Press.Google Scholar
  68. Passier, M. A., Isaac, W., & Hynd, G. W. (1985). Neuropsychological development of behavior attributed to frontal lobe functioning in children. Developmental Neuropsychology, 1, 349–370.Google Scholar
  69. Peters, J. E., Romaine, J. S., & Dykman, R. A. (1975). A special neurological examination of children with learning disabilities. Developmental Medicine and Child Neurology, 17, 63–78.PubMedGoogle Scholar
  70. Pollitt, E., & Thomson, C. (1977). Protein-caloric malnutrition and behavior: A view from psychology. In R. J. Wurtman & J. J. Wurtman (Eds.), Nutrition and the brain (Vol. 2, pp. 261–304). New York: Raven Press.Google Scholar
  71. Prechtl, H. F. R., & Stemmer, C. H. (1962). The choreiform syndrome in children. Developmental Medicine and Child Neurology, 4, 119–127.PubMedGoogle Scholar
  72. Purpura, D. P., & Reaser, E. P. (1974). Methodological approaches the study of brain maturation and its abnormalities. Baltimore: University Park Press.Google Scholar
  73. Purves, D., & Lichtman, J. W. (1980). Elimination of synapses in the developing nervous system. Science, 210, 153–157.PubMedGoogle Scholar
  74. Rakic, P. (1981). Developmental events leading to laminar and areal organization of the neocortex. In F. Schmitt (Ed.), The organization of the cerebral cortex (pp. 7–28). Cambridge: M.I.T. Press.Google Scholar
  75. Reitan, R. M., & Davison, L. A. (Eds.). (1974). Clinical neuropsychology: Current status and applications. New York: Wiley Press.Google Scholar
  76. Risser, A. H. (1984, February). Nuclear magnetic resonance imaging: A primer for the neuropsychologist. Paper presented at the XIIth annual meeting of the International Neuropsychological Society, Houston, TX.Google Scholar
  77. Robinson, H., & Robinson, N. (1976). The mentally retarded child (2nd ed.). New York: McGraw-Hill.Google Scholar
  78. Rodier, P. M. (1984). Exogenous sources of malformations in development. In E. S. Gollin (Ed.), Malformations of development: Biological and psychological sources and consequences (pp. 287–313). New York: Academic Press.Google Scholar
  79. Rourke, B. P., Bakker, D. J., Fisk, F. L., & Strang, J. D. (1983). Child neuropsychology: An introduction to theory, research, and clinical practice. New York: Guilford Press.Google Scholar
  80. Rumsey, J. M., Dorwart, R., Vermess, M., Denckla, M. B., Kruesi, M. J. P., & Rapoport, J. L. (1986). Magnetic resonance imaging of brain anatomy in severe developmental dyslexia. Archives of Neurology, 43, 1045–1046.PubMedGoogle Scholar
  81. Rutter, M., Tizard, J., Yule, W., Graham, P., & Whitmore, K. (1976). Research report: Isle of Wight studies 1964–1974. Psychological Medicine, 6, 313–332.PubMedGoogle Scholar
  82. Sarazin, F. F-A. & Spreen, O. (1986). Fifteen-year stability of some neuropsychological tests in learning disabled subjects with and without neurological impairment. Journal of Clinical and Experimental Neuropsychology, 8, 190–200.PubMedGoogle Scholar
  83. Satz, P., & Sparrow, S. (1970). Specific developmental dyslexia: A theoretical formulation. In D. J. Bakker & P. Satz (Eds.), Specific reading disability: Advances in theory and method (pp. 17–39). Rotterdam: Rotterdam University Press.Google Scholar
  84. Satz, P., Taylor, H. G., Friel, J., & Fletcher, J. M. (1978). Some developmental and predictive precursors of reading disabilities: A six year follow-up. In A. Benton & D. Pearl (Eds.), Dyslexia: An appraisal of current knowledge (pp. 313–348). New York: Oxford Press.Google Scholar
  85. Schneider, G. E. (1979). Is it really better to have your brain disease early? A revision of the “Kennard principle.” Neuropsychologia, 17, 557–584.PubMedGoogle Scholar
  86. Shafer, S. Q., Shaffer, D., O’Connor, P. A., & Stokman, C. J. (1983). Hard thoughts on neurological “soft signs.” In M. Rutter (Ed.), Developmental neuropsychiatry (pp. 133–143). New York: Guilford Press.Google Scholar
  87. Shafer, S. Q. Stokman, C. J., Shaffer, D., Ng, S. K-C., O’Connor, P. A., & Schonfield, I. S. (1986). Ten year consistency in neurological test performance of children without focal neurological deficit. Developmental Medicine and Child Neurology, 28, 417–427.PubMedGoogle Scholar
  88. Shaffer, D. (1978). “Soft” neurological signs and later psychiatric disorder—A review. Journal of Psychology and Psychiatry and Allied Disciplines, 19, 63–65.Google Scholar
  89. Shaffer, D., O’Connor, P. A., Shafer, S. Q., & Puris, S. (1983). Neurological soft signs: Their origins and significance for behaviour. In M. Rutter (Ed.), Developmental neuropsychiatry (pp. 144–164). New York: Guilford Press.Google Scholar
  90. Spreen, O. (1978). Learning disabled children growing up (Final report to Health and Welfare Canada, Health Programs Branch). Ottawa: Health and Welfare Canada.Google Scholar
  91. Spreen, O., Tupper, D., Risser, A., Tuokko, H., & Edgell, D. (1984). Human developmental neuropsychology. New York: Oxford Press.Google Scholar
  92. St. James-Roberts, I. (1979). Neurological plasticity, recovery from brain insult, and child development. In H. W. Reese & P. Lipsitt (Eds.). Advances in child development and behavior (Vol. 14, pp. 253–319). New York: Academic Press.Google Scholar
  93. Stokman, C. J., Shafer, S. Q., Shaffer, D., Ng, S. K-C., O’Connor, P. A., & Wolff, R. W. (1986). Assessment of neurological soft signs in adolescents: Reliability studies. Developmental Medicine and Child Neurology, 28, 428–439.PubMedGoogle Scholar
  94. Taylor, E. M. (1959). Psychological appraisal of children with cerebral defects. Cambridge: The Commonwealth Fund.Google Scholar
  95. Taylor, H. G., Fletcher, J. M., & Satz, P. (1984). Neuropsychological assessment of children. In G. Goldstein & M. Hersen (Eds.), Handbook of psychological assessment (pp. 211–234). New York: Pergamon Press.Google Scholar
  96. Teuber, H-L. (1975). Recovery of function after brain injury in man. Outcome of severe damage to the central nervous system, Ciba Foundation Symposium 34 (new series) (pp. 159–186). Amsterdam: Elsevier.Google Scholar
  97. Thomas, J. (1968). Introduction to human embryology. Philadelphia: Lea & Febiger.Google Scholar
  98. Towbin, A. (1971). Organic causes of minimal brain dysfunction: Perinatal origin of minimal cerebral lesions. Journal of the American Medical Association, 217, 1207–1214.PubMedGoogle Scholar
  99. Turkewitz, G., & Kenny, P. (1982). Limitations on input as a basis for neural organization and perceptual development: A preliminary theoretical statement. Developmental Psychobiology, 15, 357–368.PubMedGoogle Scholar
  100. Walsh, K. W. (1978). Neuropsychology: A clinical approach. Edinburgh: Churchill Livingstone.Google Scholar
  101. Weiss, G., & Hechtman, C. (1979). The hyperactive child syndrome. Science, 205, 1348–1354.PubMedGoogle Scholar
  102. Wender, P. H. (1971). Minimal brain dysfunction in children. New York: Wiley-Interscience.Google Scholar
  103. Williams, R., & Caviness, V. B. (1984). Normal and abnormal brain development. In R. E. Tarter & G. Goldstein (Eds.), Advances in clinical neuropsychology (Vol. 2, pp. 1–62). New York: Plenum Press.Google Scholar
  104. Winick, M., & Rosso, P. (1969). The effect of severe early malnutrition on cellular growth of human brain. Pediatric Research, 3, 181–187.PubMedGoogle Scholar
  105. Witelson, S. F. (1976). Abnormal right hemisphere specialization in developmental dyslexia. In R. M. Knights & D. J. Bakker (Eds.), The neuropsychology of learning disorders: Theoretical approaches (pp. 233–256). Baltimore: University Park Press.Google Scholar
  106. Witelson, S. F. (1977). Early hemisphere specialization and interhemisphere plasticity: An empirical and theoretical review. In S. J. Segalowitz & F. A. Gruber (Eds.), Language development and neurological theory (pp. 213–287). New York: Academic Press.Google Scholar
  107. Yakovlev, P. I., & LeCours, A. R. (1967). The myelogenetic cycles of regional maturation of the brain. In A. Minkowski (Ed.), Regional development of the brain in early life (pp. 3–69). Oxford: Blackwell Scientific.Google Scholar
  108. Zigler, E. (1969). Development versus difference theories of mental retardation and the problem of motivation. American Journal of Mental Deficiency, 73, 536–556.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • Anthony H. Risser
    • 1
  • Dorothy Edgell
    • 2
  1. 1.Department of Neurology, Mount Sinai Medical CenterUniversity of Wisconsin Medical SchoolMilwaukeeUSA
  2. 2.Department of PsychologyJack Ledger Child and Adolescent Psychiatric Unit, Arbutus Society for ChildrenVictoriaCanada

Personalised recommendations