Asphaltenes pp 97-130 | Cite as

Solubility and Phase Behavior of Asphaltenes in Hydrocarbon Media

  • Roberto Cimino
  • Sebastiano Correra
  • Alberto Del Bianco
  • Thomas P. Lockhart

Abstract

Several decades of experimental and theoretical investigation notwithstanding, only a partial description of the physical state of asphaltenes in crude oil and hydrocarbon solvents and of their tendency to undergo phase separation has been achieved. The strong interest in developing a better understanding of the solution behavior of asphaltenes is motivated by the impact of their phase separation on the production, transportation, refining, and utilization of crude oil. The tendency of asphaltenes to sediment and flocculate during storage and transportation, for example, is a serious economic issue. Less familiar, perhaps, are the production problems that can be caused by the formation of asphaltene deposits within the reservoir or wellbore.

Keywords

Phase Behavior Size Exclusion Chromatography Solubility Parameter Hydrocarbon Solvent Asphaltene Precipitation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Galoppini and M. Tambini, Asphaltene deposition monitoring and removal treatments: an experience in ultra deep wells, paper SPE 27622, 1994 Europ. Production Operations Conf.,Society of Petroleum Engineers: Richardson, TX.Google Scholar
  2. 2.
    K.H. Altgelt and M.M. Boduszynski, “Composition and Analysis of Heavy Petroleum Fractions,” Marcel. Dekker, New York (1994).Google Scholar
  3. 3.
    K.H. Altgelt and T.H. Gouw, “Chromatography in Petroleum Analysis,” Marcel Dekker, New York (1979).Google Scholar
  4. 4.
    L.R. Snyder and J.J. Kirkland, “Introduction to Modern Liquid Chromatography,” Wiley, New York (1979).Google Scholar
  5. 5.
    D.W. Later, M.L. Lee, K.D. Bartle, R.C. Kong and D.L. Vassiloros, Chemical class separation and characterization of organic compounds in synthetic fuels, Anal. Chem. 53: 1612 (1981).CrossRefGoogle Scholar
  6. 6.
    E. Lundanes and T. Greibrockk, Quantitation of boiling fractions of North Sea oil after class separation and gel permeation chromatography, J. Liq. Chromat. 8: 1035 (1985).CrossRefGoogle Scholar
  7. 7.
    M.M. Boduszynski, R.J. Hurtubise and H.S. Silver, Separation of solvent-refined coal into compound-class fractions, Anal. Chem. 54: 375 (1982).CrossRefGoogle Scholar
  8. 8.
    W.D. Dark, Crude oil hydrocarbon group separation quantitation.. 1 Liq. Chromat. 5: 1645 (1982).CrossRefGoogle Scholar
  9. 9.
    D.W. Later and B.W. Wilson, Standardization of alumina and silica adsorbents used for chemical class separation of polycyclic aromatic compounds, Anal. Chem. 57: 2979 (1985).CrossRefGoogle Scholar
  10. 10.
    C.D. Pearson and S.G. Gharfeh, Automated high-performance liquid chromatography determination of hydrocarbon types in crude oil residue using a flame ionization detector, Anal. Chem. 58: 307 (1986).CrossRefGoogle Scholar
  11. 11.
    M. Bouquet, J.M. Colin, J.P. Durand and R. Boulet, New analytical tools for the upgrading of residual feeds through the FCC process, ACS Div. Pet. Chem. Preprints 34: 339 (1989).Google Scholar
  12. 12.
    L.W. Corbett and U. Petrossi, Differences in distillation and solvent separated asphalt residue, IandEC Prod. Res. Develop. 17: 342 (1978).CrossRefGoogle Scholar
  13. 13.
    A. Matsunaga, Separation of aromatic and polar compounds in fossil fuel liquids by liquid chromatography, Anal. Chem. 55: 1375 (1983).CrossRefGoogle Scholar
  14. 14.
    E. Lundanes and T. Greibrokk, Group separation of oil residues by supercritical fluid chromatography, J. Chromatogr. 349: 439 (1985).CrossRefGoogle Scholar
  15. 15.
    L. Carbognani and A. Izquierdo, Preparative compound class separation of heavy oil vacuum residue by high-performance liquid chromatography, Fuel Sci.and Techn. Int’l. 8: 1 (1990).CrossRefGoogle Scholar
  16. 16.
    J.G. Speight, “The Chemistry and Technology ofPetroleum”, Marcel Dekker, New York (1980), Ch.5.Google Scholar
  17. 17.
    J.G. Speight, R.B. Long and T.D. Trowbridge, Factors influencing the separation of asphaltenes from heavy petroleum feedstocks, Fuel 63: 616 (1984).CrossRefGoogle Scholar
  18. 18.
    Standards for Petroleum and Its Products, Standard No. IP 143/57“, Institute of Petroleum, London.Google Scholar
  19. 19.
    D.L. Mitchell and J.G. Speight, The solubility of asphaltenes in hydrocarbon solvents, Fuel 52: 149 (1973).CrossRefGoogle Scholar
  20. 20.
    R.B. Long, The concept of asphaltenes, ACS Div. Petr. Chem. Preprints 24: 891 (1979).Google Scholar
  21. 21.
    S.E. Moschopedis and J.G. Speight, Investigation of hydrogen bonding by oxygen functions in Athabasca bitumen, Fuel 55: 187 (1976).CrossRefGoogle Scholar
  22. 22.
    J.G. Speight and S.E Moschopedis, Some observations on the molecular “nature” of petroleum asphaltenes, ACS Div. Pet. Chem. Preprints 24: 910 (1979).Google Scholar
  23. 23.
    J.G. Speight, Solvent effects in the molecular weight of petroleum asphaltenes, ACS Div. Pet. Chem.Preprints 26: 825 (1981).Google Scholar
  24. 24.
    J.G. Speight, A chemical and physical explanation of incompatibility during refining operations, Proc. 4th Intl. Conf on the Stability and Handling of Liquid Fuels, US Dept. Energy, 169 (1992).Google Scholar
  25. 25.
    R.B. Long and J.G. Speight, Studies in petroleum composition. Development of a compositional “map” for various feedstocks, Rev. de l’Institut Francaise du Petrole 44: 205 (1989).Google Scholar
  26. 26.
    J.G. Speight, Latest thoughts on the molecular nature of petroleum asphaltenes, ACS Div. Pet. Chem. Preprints 34: 321 (1989).Google Scholar
  27. 27.
    J.A. Koots and J.G. Speight, Relation of petroleum resins to asphaltenes, Fuel 54: 179 (1975).CrossRefGoogle Scholar
  28. 28.
    J.K. Brown and W.R. Ladner, A study of the hydrogen distribution in coal-like materials by high resolution nuclear magnetic resonance spectroscopy. I-The measurement and interpretation of the spectra, Fuel 36: 79 (1960).Google Scholar
  29. 29.
    J.K. Brown and W.R. Ladner, A study of the hydrogen distribution in coal-like materials by high resolution nuclear magnetic resonance spectroscopy. II-A comparison with infra-red measurement and the conversion to carbon structure, Fuel 36: 87 (1960).Google Scholar
  30. 30.
    Y. Maekawa, T. Yoshida and Y. Yoshida, Quantitative 13C nmr spectroscopy of a coal-derived oil and the assignment of chemical shifts, Fuel 58: 864 (1979).CrossRefGoogle Scholar
  31. 31.
    E.M. Dickinson, Structural composition of petroleum fractions using proton and 13C NMR spectroscopy, Fuel 59: 290 (1980).CrossRefGoogle Scholar
  32. 32.
    P.F. Barron, M.R. Bendall, M.J. Armostrong and A.R. Atkins, Application of the DEPT pulse sequence for the fractions of 13CH„ sub-spectra of coal-derived liquids, Fuel 63: 1276 (1984).CrossRefGoogle Scholar
  33. 33.
    J.M. Dereppe and C. Moreaux, Measurement of CH, group abundances in fossil fuel materials using DEPT 13C NMR, Fuel 64: 1174 (1985).CrossRefGoogle Scholar
  34. 34.
    C.E. Snape and M.K. Marsh, Stuctural analysis of heavy fossil fuel fractions using 13C NMR spectral editing, ACS Div. Pet. Chem. Preprints 30: 20 (1985).Google Scholar
  35. 35.
    C.E. Snape, W.R. Ladner, L. Petrakis and B.C. Gates, The chemical nature of asphaltenes from coal liquefaction processes, Fuel Proc. Techn. 8: 155 (1984).CrossRefGoogle Scholar
  36. 36.
    D.J. Cookson and B.E. Smith, One-and two-dimensional NMR methods for elucidating structural characteristics of aromatic fractions from petroleum and synthetic fuels, Fuel 1: 11 (1987).Google Scholar
  37. 37.
    C.E. Snape, G.J. Ray and C.D. Price, Two-dimensional NMR analysis of aromatic fractions from a coal liquefaction solvents, Fuel 65: 877 (1986).CrossRefGoogle Scholar
  38. 38.
    B.P. Tissot and D.H. Weite, “Petroleum Formation and Occurrence,” Springer-Verlag, New York (1978), Part IV.CrossRefGoogle Scholar
  39. 39.
    J.F. McKay, P.J. Amend, P.M. Hamsberger, T.E. Cogswell and D.R. Latham, Composition of petroleum heavy ends. 1. Separation of petroleum 675°C residues, Fuel 60: 14 (1981).CrossRefGoogle Scholar
  40. 40.
    J.F. McKay, P.J. Amend, P.M. Hamsberger, R.B. Erickson, T.E. Cogswell and D.R. Latham, Composition of petroleum heavy ends. 2. Characterization of compound types in petroleum 675°C residues, Fuel 60: 17 (1981).CrossRefGoogle Scholar
  41. 41.
    Geochemistry of Sulfur in Fossil Fuels“, edited by W.L. Orr and C.M. White, ACS Symp. Series 429, American Chemical Society, Washington, DC (1990).Google Scholar
  42. 42.
    K.D. Rose and M.A. Francisco, A two-step chemistry for highlighting heteroatom species in petroleum materials using 13C NMR spectroscopy, J. Am. Chem. Soc. 110: 637 (1988).CrossRefGoogle Scholar
  43. 43.
    J.M. Ruiz., B.M. Carden, L.J. Lena, E.J. Vincent and J.C. Escalier, Determination of sulfur in asphalts by selective oxidation and photoelectron spectroscopy for chemical analysis, Anal. Chem. 54: 689 (1982).CrossRefGoogle Scholar
  44. 44.
    H.V. Drushel, Sulfur compounds in petroleum-known and unknown, ACS Diu Pet. Chem. Preprints 15: C13 (1970).Google Scholar
  45. 45.
    S.R.Keleman, G.N. George and M.L. Gorbaty, Direct determination and quantification of sulphur forms in heavy petroleum and coal. 1. The X-ray photoelectron spectroscopy (XPS) approach, Fuel 69: 939 (1990).CrossRefGoogle Scholar
  46. 46.
    G.S. Waldo, O.C. Mullins, J.E. Penner-Hahn and S.P. Cramer, Determination of the chemical environment of sulphur in petroleum asphaltenes by X-ray absorption spectroscopy Fuel 71:53 (1992).Google Scholar
  47. 47.
    S.E. Moschopedis, R.W. Hawkins and J.G. Speight, Identification of nitrogen functional groups in Athabasca bitumen, Fuel 60: 397 (1981).CrossRefGoogle Scholar
  48. 48.
    J.M. Jacobsen and M.R. Gray, Use of IR spectroscopy and nitrogen titration data in structural group analysis of bitumen, Fuel 66: 749 (1987).CrossRefGoogle Scholar
  49. 49.
    J.F. McKay, J.H. Weber and D.R. Latham, Characterization of nitrogen bases in high-boiling petroleum distillates, Anal. Chem. 48: 891 (1976).CrossRefGoogle Scholar
  50. 50.
    S. Mitra-Kirtley, O.C. Mullins, J. van Elp, S.J. George, J. Chen and S.P. Cramer, Determination of the nitrogen chemical structures in petroleum asphaltenes using XANES spectroscopy, J. Am. Chem. Soc. 115: 252 (1993).CrossRefGoogle Scholar
  51. 51.
    K.D. Rose and M.A. Francisco, Characterization of acidic heteroatoms in heavy petroleum fractions by phase-transfer methylation and NMR spectroscopy, Energy and Fuels 1:233 (1987).Google Scholar
  52. 52.
    R.G.S. Ritche, R.S. Roche and W. Steedman, Pyrolysis of Athabasca tar sands: analysis of the condensible products from asphaltene, Fuel 58: 523 (1979).CrossRefGoogle Scholar
  53. 53.
    E.W. Bakar, Mass spectrometric characterization ofpetroporphyrins, J. Am. Chem. Soc. 88: 2311 (1966).CrossRefGoogle Scholar
  54. 54.
    F.E. Dickson and L. Petrakis, Application of electronmagnetic resonance and electronic spectroscopy to the characterization of vanadium species in petroleum fractions, Anal. Chem. 42: 978 (1972).CrossRefGoogle Scholar
  55. 55.
    M. Popl, V. Dolansky, G. Sebor and M. Stejskal, Hydrocarbons and porphyrins in rock extracts, Fuel 57: 565 (1978).CrossRefGoogle Scholar
  56. 56.
    D.H. Freedman, D.C. Saint Martin and C.J. Boreham, Identification of metalloporhyrins by third-derivative UV/Vis diode array spectroscopy, Energy and Fuels 7: 194 (1993).CrossRefGoogle Scholar
  57. 57.
    R.H. Fish and J.J. Komlenic, Molecular characterization and profile identifications of vanadyl compounds in heavy crude petroleum by liquid chromatography/graphite furace atomic spectrometry, Anal. Chem. 56: 510 (1984).CrossRefGoogle Scholar
  58. 58.
    R.H. Fish, J.J. Komlenic and B.K. Wines, Characterization and comparison of vanadyl and nickel compounds in heavy crude petroleums and asphaltenes by reverse-phase and size exclusion liquid chromatography/graphite furace atomic spectrometry, Anal. Chem. 56: 2452 (1984).CrossRefGoogle Scholar
  59. 59.
    C.D. Pearson and J.B. Green, Vanadium and Nickel complexes in petroleum resid acid, base, and neutral fractions, Energy and Fuels 7: 338 (1993).CrossRefGoogle Scholar
  60. 60.
    J.G. Speight and S.E. Moschopedis, On the polymeric nature of petroleum asphaltenes, Fuel 59: 440 (1980).CrossRefGoogle Scholar
  61. 61.
    D.A. Storm, S.J. DeCaino, M.M. De Tar and V.P. Nero, Upper bound on number average molecular weight of asphaltene, Fuel 69: 735 (1990).CrossRefGoogle Scholar
  62. 62.
    J.F. McKay, P.J. Amend, T.E. Cogswell, P.M. Hamsberg, R.B. Erickson and D.R. Latham, Petroleum asphaltenes-chemistry and composition, ACS Div: Pet. Chem. Preprints 22: 708 (1977).Google Scholar
  63. 63.
    J. Briant and G. Hotier, Etude de l’étage des asphaltènes dans les melanges d’hydrocarbures: taille des amas moléculaires, Rev. de l’Institut Francaise du Petrole 38: 83 (1983).Google Scholar
  64. 64.
    J.G. Speight, D.L. Wernick, K.A. Gould, R.E. Overfield, B.M.L. Rao and D.W. Savage, Molecular weight and association of asphaltenes: a critical review, Rev. de l’Institut Francaise du Petrole 40: 51 (1985).Google Scholar
  65. 65.
    S.E. Moschopedis, J.F. Freycr and J.G. Speight, Investigation of asphaltene molecular weights, Fuel 55: 227 (1976).CrossRefGoogle Scholar
  66. 66.
    M.M. Al-Jarrah and A.N. Al-Dujaili, New findings on the physical nature of asphalts, Fuel Sci. and Tech. Intl 7: 69 (1989).Google Scholar
  67. 67.
    M.M. Boduszynski, Composition of heavy petroleum. 2. Molecular characterization, Energy and Fuels 2: 597 (1988).CrossRefGoogle Scholar
  68. 68.
    K.E. Chung, L.L. Anderson and W.H. Wiser, Molecular weight determination by vapor-phase-osmometry, Fuel 58: 847 (1978).CrossRefGoogle Scholar
  69. 69.
    K.H. Altgelt, Asphaltene molecular weight by vapor pressure osmometry, ACS Div. Pen: Chem. Preprints 13 (3): 37 (1968).Google Scholar
  70. 70.
    S. Acevedo, G. Escobar, L.B. Gutierrez and J. D’ Aquino, Synthesis and isolation of asphaltenes standard for calibration of G.P.C. columns and determination of asphaltene molecular weight, Fuel 7 1:1077 (1992).Google Scholar
  71. 71.
    R.E. Overfield, E.Y. Sheu, S.K. Sinha and K.S. Liang, SANS study of asphaltene aggregation, Fuel Sci. and Techn. Intl. 7: 611 (1989).Google Scholar
  72. 72.
    J.C. Ravey, G. Decouret and D. Espinat, Asphaltene macrostructure by small angle neutron scattering, Fue167: 1560 (1988).Google Scholar
  73. 73.
    E.Y. Sheu, M.M. DeTar, D.A. Storm and S.J. DeCanio, Aggregation and kinetics of asphaltenes in organic solvents, Fuel71: 299 (1992).Google Scholar
  74. 74.
    A.F.M. Barton, “CRC Handbook of Solubility Parameters and Other Cohesion Parameters” CRC Press, Boca R aton (199 I).Google Scholar
  75. 75.
    C.E. Snape and K.D. Bartle, Definition of fossil fuel-derived asphaltenes in terms of average structural properties, Fuel 63: 883 (1984).CrossRefGoogle Scholar
  76. 76.
    P.R. Waller, A. Williams and K.D. Bartle. The structural nature and solubility of residual fuel oil fractions, Fuel 68: 520 (1989).CrossRefGoogle Scholar
  77. 77.
    C.W. Benson, R.A. Simcox and I.C. Huldal, Tailoring aromatic hydrocarbons for asphaltene removal, Fourth Symposium on Chemicals in the Oil Industry: Dey. and Appl., Ed P.H. Ogden, 215 (1991).Google Scholar
  78. 78.
    G.P. Dayvault and D.E. Patterson, Solvent and acid stimulation increase production in Los Angeles basin waterflood, paper SPE 18816, 1989 SPE Reg. Meeting,Society of Petroleum Engineers: Richardson, TX.Google Scholar
  79. 79.
    M.L. Samuelson, Alternatives to aromatics for solvency of organic deposits, paper SPE 23816, 1992 SPE Int’l. Symp. on Formation Damage, Society of Petroleum Engineers: Richardson, TX.Google Scholar
  80. 80.
    G. Broaddus. Well-and formation-damage removal with nonacid fluids, J.Petroleum Techn. 685 (June 1988).Google Scholar
  81. 81.
    G. Gonzales and A. Middea, Peptization of asphaltene by various oil soluble amphiphiles, Colloids and Surfaces 42: 207 (1991).CrossRefGoogle Scholar
  82. 82.
    M.G. Trbovich and G.E. King, Asphaltene deposit removal: long-lasting treatment with a co-solvent, paper SPE 21038, 1991 SPE lnt’l. Symp. on Oilfield Chem.,Society of Petroleum Engineers: Richardson, TX.Google Scholar
  83. 83.
    M.E. Newberry and K.M. Barker, Formation damage prevention through the control of paraffin and asphaltene deposition, paper SPE 13796, 1991 SPE Production Operations Symp.,Society of Petroleum Engineers: Richardson, TX.Google Scholar
  84. 84.
    L. Barberis Canonico. A. Del Bianco, G. Piro and F. Stroppa, C. Carniani, E. Mazzolini, A comprehensive approach for the evaluation of chemicals for asphaltene deposit removal. Recent Advances in Oilfield Chemistry, Ed. by P. H. Ogden, The Royal Society of Chemistry, p.220 (1994).Google Scholar
  85. 85.
    A. Del Bianco, F. Stroppa and L. Bertero, Tailoring hydrocarbon streams for asphaltene removal, paper SPE 28992, 1995 SPE Int’1. Symp. on Oilfield Chemistry,Society of Petroleum Engineers: Richardson, TX.Google Scholar
  86. 86.
    F.J. Nellensteyn, The constitution of asphalt, J. Inst. Petrol. Technol. 10: 311 (1924).Google Scholar
  87. 87.
    F.J. Nellensteyn, The composition of the micelle nucleus of asphalt bitumen and coal tar, and some related problems, Chem. Weekblad 36: 362 (1939).Google Scholar
  88. 88.
    J.Ph. Pfeiffer and R.N. Saal, Asphaltic bitumen as colloid system, J. Phys. Chem. 44: 139 (1940).CrossRefGoogle Scholar
  89. 89.
    J.M. Swanson. A contribution to the physical chemistry of the asphalts, J. Phys. Chem. 46: 141 (1942).CrossRefGoogle Scholar
  90. 90.
    T.F. Yen, A macrostructure of petroleum asphalt, ACS Div. Petr. Chem. Preprints 35: 314 (1990).Google Scholar
  91. 91.
    P.C. Hiemenz, “Principles of Colloid and Surface Chemistry,” Ch. 1, 8, and 11, Marcel Dekker, New York, 2nd ed. (1986).Google Scholar
  92. 92.
    J.P. Dickie and T.F. Yen, Macrostructures of the asphaltic fractions by various instrumental methods, Anal. Chem. 39: 1847 (1967).Google Scholar
  93. 93.
    D. Espinat, and J.C. Ravey, Colloidal structure of asphaltene solutions and heavy oil fractions studied by small angle neutron and x-ray scattering, paper SPE 25187, 1993 SPE Int’l. Symp. on Oilfield Chem.,Society of Petroleum Engineers: Richardson, TX.Google Scholar
  94. 94.
    K.J. Leontaritis and G.A. Mansoori, Asphaltene flocculation during oil recovery and processing: a thermodynamic-colloidal model, paper SPE 16258, 1987 SPE Int’1. Symp. on Oilfield Chem.,Society of Petroleum Engineers: Richardson, TX.Google Scholar
  95. 95.
    J.S. Parkand and G.A. Mansoori, Aggregation and deposition of heavy organics in petroleum crudes, Energy Sources 10: 109 (1988).CrossRefGoogle Scholar
  96. 96.
    W.K. Stephenson, Producing asphaltenic crude oils: problems and solutions, Petrol. Eng. Intl. 6: 24 (1990).Google Scholar
  97. 97.
    K.J. Leontaritis, Asphaltene deposition: a comprehensive description of problem manifestations, and modeling approaches, paper SPE 18892, 1989 SPE Production Operations Symp.,Society of Petroleum Engineers: Richardson, TX.Google Scholar
  98. 98.
    K.J. Leontaritis, J.O. Amaefule and R.E. Charles. A systematic approach for the prevention and treatment of formation damage caused by asphaltene deposition, SPE Production Facilities, 9: 157 (1994).Google Scholar
  99. 99.
    J. Escobedo and G.A. Mansoori, Determination of the onset of asphaltene flocculation (a novel method), paper SPE 28018, Society of Petroleum Engineers: Richardson, TX.Google Scholar
  100. 100.
    J.J. Heithaus, Measurement and significance of asphaltene peptization, J. Inst. Petrol. 48: 45 (1962).Google Scholar
  101. 101.
    D.L. Katz and K.E. Beu, Nature of asphaltic substances, Ind. Eng. Chem. 37: 195 (1945).CrossRefGoogle Scholar
  102. 102.
    E.Y. Sheu, K.S. Liang, S.K. Sinha and R.E.Overfield, Polydispersity analysis of asphaltene solutions in toluene, J. Colloid Interface. Sci. 153:399 (1992).Google Scholar
  103. 103.
    N.F. Carnahan, L. Quintero, D.M. Pfund, H.L. Fulton, R.D. Smith, M. Capel and K. Leontaritis, A small angle x-ray scattering study of the effect of pressure on the aggregation of asphaltene fractions in petroleum fluids under near-critical solvent conditions, Langmuir 9: 2035 (1993).CrossRefGoogle Scholar
  104. 104.
    K.J. Leontaritis, “Asphaltene Deposition: A Thermodynamic-Colloidal Model,” Dissertation for the degree of Doctor of Philosophy in Chemical Engineering, University of Illinois, Chicago (1988).Google Scholar
  105. 105.
    H. Tompa, “Polymer Solutions,” Butterworths, London (1956).Google Scholar
  106. 106.
    A. Hirschberg, L.N.J. de Jong, B.A. Schipper and J.G.Meijers, Influence of temperature and pressure on asphaltene flocculation, Soc. Petrol. Eng. J. 6: 283 (1984).Google Scholar
  107. 107.
    J.M. Prausnitz, R.N. Lichtenthaler and E.G. de Azevedo, “Molecular Thermodynamics of Fluid-Phase Equilibria”, Prentice-Hall, Englewood Cliffs (1986).Google Scholar
  108. 108.
    N.E. Burke, R.E. Hobbs and S.F. Kashou, Measurement and modeling of asphaltene precipitation, J. Petroleum Techn., 42: 1440 (1990).Google Scholar
  109. 109.
    S.L. Kokal, J. Najman, S.G. Sayegh and A.E. George, Measurement and correlation of asphaltene precipitation from heavy oils by gas injection, J. Canadian Petrol. Techn. 31 (4): 24 (1992).Google Scholar
  110. 110.
    R.L. Scott and M. Magat, The thermodynamics of high-polymer solutions. I. The free energy of mixing of solvents and polymers of heterogeneous distribution, J. Chem. Phys. 13: 172 (1945).CrossRefGoogle Scholar
  111. 111.
    S. Kawanaka, S.J. Park and G.A. Mansoori, Organic deposition from reservoir fluids: a thermodynamic predictive technique, Soc. Petrol. Eng. Reservoir Eng. 6: 185 (1991).Google Scholar
  112. 112.
    S. Kawanaka, S.J. Park and G.A. Mansoori, The role of asphaltene deposition in FOR gas flooding: a predictive technique, paper SPE/DOE 17376, 1988 SPE/DOE Enhanced Oil Recovery Symp.,Society of Petroleum Engineers: Richardson, TX.Google Scholar
  113. 113.
    G.A. Mansoori and T.S. Jiang, Asphaltene deposition and its role in Eor miscible gas flooding, Proceedings, 3rd Europ. Conf on Enhanced Oil Recovery, Rome, 16–18 Apr. (1985).Google Scholar
  114. 114.
    F.G. Thomas, D.B. Bennion, D.W. Bennion and B.E. Hunter, Experimental and theoretical studies of solids precipitation from reservoir fluid, J.Can.Petrol.Techn., 31 (1): 22 (1992).Google Scholar
  115. 115.
    T. H. Chung, Thermodynamic modeling for organic solid precipitation, paper SPE 24851, 67th Ann. Techn. Conf. (1992),Society of Petroleum Engineers: Richardson, TX.Google Scholar
  116. 116.
    N. Senglet, C. Williams, D.Faure, T. Des Courieres and R. Guilard, Microheterogeneity study of heavy crude petroleum by uv-visible spectroscopy and small angle x-ray scattering, Fuel 69: 72 (1990).CrossRefGoogle Scholar
  117. 117.
    G. Del Piero (Eniricerche), unpublished results.Google Scholar
  118. 118.
    F. Chung, P. Sarathi and R. Jones, Modeling of asphaltene and wax precipitation, Topical Report NIPER-498, UC-122 (1991).CrossRefGoogle Scholar
  119. 119.
    K.R.L. Popper, “The Logic of Scientific Discovery,” Routledge, New York (1992).Google Scholar
  120. 120.
    K. Kawate, I. Imagawa and M. Nakata, Cloud-point curves of ternary system nitroethane+cyclohexane+polystyrene determined by a novel method, Polymer J. 23: 233 (1991).CrossRefGoogle Scholar
  121. 121.
    G. Hotier and M. Robin, Effects of different diluents on heavy oil products: measurement, interpretation, and a forecast of asphaltene flocculation, Revue de 1’IFP 38: 101 (1983).Google Scholar
  122. 122.
    C. Reichert, B.J. Fuhr and L.L. Klein, Measurement of asphaltene flocculation in bitumen solutions, J.Can.Petrol.Techn., 25 (5): 33 (1986).Google Scholar
  123. 123.
    R. Cimino, S. Correra, P. Sacomani and C. Carniani, paper SPE28993, 1995 SPE Int’l. Symp. on Oilfield Chemistry,Society of Petroleum Engineers: Richardson, TX.Google Scholar
  124. 124.
    I. Sanchez, Polymer phase separation, in Encyclopedia of Physical Science and Technology,“ Meyers, R.A., ed., Academic Press, Orlando (1987).Google Scholar
  125. 125.
    G. Soave, Application of equations of state and the theory of group solutions to phase equilibrium prediction, Fluid Phase Equilibria 87: 23 (1993).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Roberto Cimino
    • 1
  • Sebastiano Correra
    • 1
  • Alberto Del Bianco
    • 1
  • Thomas P. Lockhart
    • 1
  1. 1.Eniricerche S.p.A.San Donato MilaneseItaly

Personalised recommendations