New Model for the Mutual Enhancement of Nonlinear Optical Phenomena in Composite Media

  • G. R. Flynn
  • L. Malley
  • C. R. Schwarze
  • D. A. Pommet
  • M. A. Fiddy

Abstract

We consider an optically linear fluid containing nanoparticles in which quantum confinement effects permit a controlled saturable absorbance to be exploited. We also incorporate the effects of neighboring particles on the local field that any one particle experiences, when calculating the effective permittivity of that particle close to resonance. Since the particles are free to move, under the influence of the Lorentz force, one can alter their spatial distribution as a function of the local field gradients. The particles will move closer together in regions of high electric field, further increasing the local field in the vicinity of any one of these particles, if their permittivities are higher than that of the host fluid. The particles move apart if the reverse is true.

Keywords

Local Field Quantum Confinement Nonlinear Optical Property Quantum Confinement Effect Local Electric Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Neeves A.E. and M. H. Birnboim M.H., 1989, Composite structures for the enhancement of nonlinear-optical susceptibility, J. Opt. Soc. Am. B6, 787–796.CrossRefGoogle Scholar
  2. 2.
    Rogovin D. and Sari S.O., 1985, Phase conjugation in liquid suspensions of microspheres in the diffusive limit,” Physical Review A 31, 4. pp. 2375–2389.CrossRefGoogle Scholar
  3. 3.
    Haus J.W. and Inguva R., 1991, Nonlinear optical properties of composite materials” Proc. SPIE 1497, 350.Google Scholar
  4. 4.
    Guerrero A. and B. S. Mendoza B. S., 1995, Model for great enhancement of second-harmonic generation in quantum dots, Opt. Soc. Am. B12, 559.CrossRefGoogle Scholar
  5. 5.
    Keller O. and Garni T., 1995, Self-consistent local field formalism for quantum dots and quantum dot arrays, Proc. CQO, Rochester NY.Google Scholar
  6. 6.
    Ricard D., Roussignol P., and Flytzanis C., 1985, Surface mediated enhancement of optical phase conjugation in metal colloids, Opt. Lett., 10, 511.CrossRefGoogle Scholar
  7. 7.
    Ricard D., Ghanassi M. and Schanne-Klein M.C., 1994, Dielectric confinement and the linear and nonlinear optical properties of semiconductor-doped glasses, Opt. Comm. 108, 311–318.CrossRefGoogle Scholar
  8. 8.
    Hache F., Ricard D. and Flytzanis C, 1986, Optical nonlinearities of small metal particles: surface mediated resonance and quantum size effects, J. Opt. Soc. Am. B, 3, (1986), 1647.CrossRefGoogle Scholar
  9. 9.
    Hache F., Ricard D., Flytzanis C. and Kreibig U, 1988 The optical Kerr effect in small metal particles and metal colloids: the case of gold”, Appl. Phys. A, 47, 347.CrossRefGoogle Scholar
  10. 10.
    Chemla D.S. and D.A.B. Miller D.A.B., 1986, Mechanism for enhanced optical nonlinearities and testability by combined dielectric-electronic confinement in semiconductor microcrystallites, Opt. Lett., 11, 522–524.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • G. R. Flynn
    • 1
  • L. Malley
    • 1
  • C. R. Schwarze
    • 1
  • D. A. Pommet
    • 1
  • M. A. Fiddy
    • 1
  1. 1.Department of Electrical EngineeringUniversity of Massachusetts LowellLowellUSA

Personalised recommendations