Diagnosis and Therapy of Brain Tumors Utilizing Radiolabeled Monoclonal Antibodies

  • Herbert E. Fuchs
  • Michael R. Zalutsky
  • Gary E. Archer
  • Darell D. Bigner
Part of the Industry-University Cooperative Chemistry Program Symposia book series (IUCC)

Abstract

Monoclonal antibodies (MAbs) have been developed against a wide variety of tumor-associated antigens and normal tissue antigens, including receptor molecules, extracellular matrix proteins, enzymes, and hormones. The in vitro use of these MAbs has greatly improved our ability to diagnose a number of diseases, including many cancers. The extension of MAbs to in vivo diagnosis and therapy, as the “magic bullets” envisioned by Paul Ehrlich1 at the turn of the century, has, however, met with more limited success. There are a number of reasons for this, and currently there is a great effort underway, using animal models to solve these problems, to pave the way for clinical use of MAbs in patients. To illustrate the problems inherent in the development of radiolabeled MAbs for clinical use, we will present our work utilizing MAbs in a variety of brain tumor models.

Keywords

Epidermal Growth Factor Receptor Mutant Epidermal Growth Factor Receptor Epidermal Growth Factor Receptor Gene Athymic Mouse Human Tumor Xenograft 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Ehrlich, Collected Studies on Immunology, Wiley, New York (1906).Google Scholar
  2. 2.
    J. L. Murray and L. M. Axtell, Impact of cancer: years of life lost due to cancer mortality, J. Natl. Cancer Inst. 52:3 (1974).PubMedGoogle Scholar
  3. 3.
    D. D. Bigner, Biology of gliomas: potential clinical implications of glioma cellular heterogeneity, Neurosurgery 9:320 (1981).PubMedCrossRefGoogle Scholar
  4. 4.
    D. Stavrou, Monoclonal antibodies in neuro-oncology, Neurosurg. Rev. 13:7 (1991).CrossRefGoogle Scholar
  5. 5.
    R. Virchow, Die krankhalten Geschwuelste, A. Hirshwald, Berlin, (11).Google Scholar
  6. 6.
    W. F. Bale and I. L. Spar, Studies directed toward the use of antibodies as carriers of radioactivity for therapy, Adv. Biol. Med. Phys. 5:285 (1957).PubMedGoogle Scholar
  7. 7.
    D. Pressman, E. D. Day, and M. Blau, The use of paired labeling in the determination of tumor-localizing antibodies, Cancer Res. 17:845 (1957).PubMedGoogle Scholar
  8. 8.
    V. Moshakis, R. A. J. McIlhinney, D. Raghaven, and A. M. Neville, Localization of human tumor xenografts after i.v. administration of radiolabeled monoclonal antibodies, Br. J. Cancer 44:91 (1981).PubMedCrossRefGoogle Scholar
  9. 9.
    D. R. Groothuis, P. Molnar, and R. G. Blasberg, Regional blood flow and blood-to-tissue transport in five brain tumor models, Prog. Exp. Tumor Res. 27:132 (1984).PubMedGoogle Scholar
  10. 10.
    M. A. Bourdon, C. J. Wikstrand, H. Furthmayer, T. J. Matthews, and D. D. Bigner, Human glioma-mesenchymal extracellular matrix antigen defined by monoclonal antibody, Cancer Res. 43:2796 (1983).PubMedGoogle Scholar
  11. 11.
    M. A. Bourdon, R. E. Coleman, R. G. Blasberg, D. R. Groothuis, and Bigner, D.D., Monoclonal antibody localization in subcutaneous and intracranial human glioma xenografts: paired label and imaging analysis, Anticancer Res. 4:133 (1984).PubMedGoogle Scholar
  12. 12.
    D. E. Bullard, C. J. Adams, R. E. Coleman, and D. D. Bigner, In vivo imaging of intracranial human glioma xenografts comparing specific with nonspecific radiolabeled monoclonal antibodies, J. Neurosurg. 64:257 (1986).PubMedCrossRefGoogle Scholar
  13. 13.
    Y. S. Lee, D. E. Bullard, M. R. Zalutsky, R. E. Coleman, H. S. Friedman, E. V. Colapinto, and D. D. Bigner, Therapeutic efficacy of murine monoclonal antibody 81C6 in a human glioma xenograft model, Cancer Res. 48:559 (1988).PubMedGoogle Scholar
  14. 14.
    Y. S. Lee, D. E. Bullard, P. A. Humphrey, E. V. Colapinto, H. S. Friedman, M. R. Zalutsky, R. E. Coleman, and D. D. Bigner, Treatment of intracranial human glioma xenografts with 131I-labeled anti-tenascin monoclonal antibody 81C6, Cancer Res. 48:2904 (1988).PubMedGoogle Scholar
  15. 15.
    E. V. Colapinto, Y. S. Lee, P. A. Humphrey, M. R. Zalutsky, H. S. Friedman, D. E. Bullard, and D. D. Bigner, The localisation of radiolabelled murine monoclonal antibody 81C6 and its Fab fragment in human glioma xenografts in athymic mice, Br. J. Neurosurg. 2:173–186 (1988).CrossRefGoogle Scholar
  16. 16.
    S. Carrel, R. S. Acolla, A. L. Carmagnola, and J. P. Mach, Common human melanoma associated antigen(s) detected by monoclonal antibodies, Cancer Res. 40:2523 (1980).PubMedGoogle Scholar
  17. 17.
    S. Carrel, M. Schreyer, A. Schmidt-Kessen, and J. P. Mach, Reactivity spectrum of 30 monoclonal antimelanoma antibodies to a panel of 28 melanoma and control cell lines, Hybridoma 1:387 (1982).PubMedCrossRefGoogle Scholar
  18. 18.
    E. V. Colapinto, P. A. Humphrey, M. R. Zalutsky, D. R. Groothuis, H. S. Friedman, N. de Tribolet, S. Carrel, and D. D. Bigner, Comparative localization of murine monoclonal antibody Mel-14 F(ab’)2 fragment and whole IgG2a in human glioma xenografts, Cancer Res. 48:5701 (1988).PubMedGoogle Scholar
  19. 19.
    E. V. Colapinto, M. R. Zalutsky, G. E. Archer, M. A. Noska, H. S. Friedman, S. Carrel, and D. D. Bigner, Radioimmunotherapy of intracerebral human glioma xenografts with 131I-labeled F(ab’)2 fragments of monoclonal antibody Mel-14, Cancer Res. 50:1822 (1990).PubMedGoogle Scholar
  20. 20.
    D. Colcher, J. Esteban, J. A. Carrasquillo, P. Sugarbaker, J. C. Reynolds, G. Bryant, S. M. Larson, and J. Schlom, Comparison of route of administration of radiolabeled monoclonal antibodies in patients with colorectal cancer, J. Nucl. Med. 27:(Abst) 902 (1986).Google Scholar
  21. 21.
    W. B. Nelp, J. F. Eary, R. F. Jones, K. E. Hellstrom, I. Hellstrom, P. L. Beaumier, and K. A. Krohn, Preliminary studies of monoclonal antibody lymphoscintigraphy in malignant melanoma, J. Nucl. Med. 28:34 (1987).PubMedGoogle Scholar
  22. 22.
    Y. S. Lee, D. E. Bullard, C. J. Wikstrand, M. R. Zalutsky, L. H. Muhlbaier, and D. D. Bigner, Comparison of monoclonal antibody delivery to intracranial glioma xenografts by intravenous and intracarotid administration, Cancer Res. 47:1941 (1987).PubMedGoogle Scholar
  23. 23.
    M. R. Zalutsky, R. P. Moseley, J. C. Benjamin, E. V. Colapinto, G. N. Fuller, H. P. Coakham, and D. D. Bigner, Monoclonal antibody and F(ab’)2 fragment delivery to tumor in patients with glioma: comparison of intracarotid and intravenous administration, Cancer Res. 50:4105 (1990).PubMedGoogle Scholar
  24. 24.
    R. Moseley, M. R. Zalutsky, H. B. Coakham, R. E. Coleman, and D. D. Bigner, Distribution of 131I-8lC6 monoclonal antibody (MAb) administered via carotid artery in patients with glioma, J. Nucl. Med. 28:603-604 (1987).Google Scholar
  25. 25.
    H. J. G. Bloom, Medulloblastoma in children: increasing survival rates and further prospects, Int. J. Radiat. Oncol. Biol. Phys. 8:2023 (1982).PubMedCrossRefGoogle Scholar
  26. 26.
    W. R. Wasserstrom, J. P. Glass, and J. B. Posner, Diagnosis and treatment of leptomeningeal metastases from solid tumors, Cancer 49:759 (1982).PubMedCrossRefGoogle Scholar
  27. 27.
    H. E. Fuchs, G. E. Archer, O. M. Colvin, S. H. Bigner, J. M. Schuster, G. N. Fuller, L. H. Muhlbaier, S. C. Schold, H. S. Friedman, and D. D. Bigner, Activity of intrathecal 4-hydroperoxycyclophosphamide in a nude rat model of human neoplastic meningitis, Cancer Res. 50:1954 (1990).PubMedGoogle Scholar
  28. 28.
    M. R. Zalutsky, P. K. Garg, J. M. Schuster, H. E. Fuchs, G. E. Archer, S. Garg, and D. D. Bigner, Radioimmunotherapy of leptomeningeal tumor using AT-211 monoclonal antibody. 9th International Congress of Radiation Research. Radiat. Res., in press (1991).Google Scholar
  29. 29.
    L. S. Lashford, A. G. Davies, R. B. Richardson, S. P. Bourne, J. A. Bullimore, H. Eckert, J. T. Kemshead, and H. B. Coakham, A pilot study of 131I monoclonal antibodies in the therapy of leptomeningeal tumors, Cancer 61:857 (1988).PubMedCrossRefGoogle Scholar
  30. 30.
    R. P. Moseley, A. B. Davies, R. B. Richardson, M. Zalutsky, S. Carrel, J. Fabre, N. Slack, J. Bullimore, B. Pizer, V. Papanastassiou, J. T. Kemshead, H. B. Coakham, and L. S. Lashford, Intrathecal administration of 131I radiolabelled monoclonal antibody as a treatment for neoplastic meningitis, Br. J. Cancer 62:637 (1990).PubMedCrossRefGoogle Scholar
  31. 31.
    P. A. Humphrey, A. J. Wong, B. Vogelstein, M. R. Zalutsky, G. N. Fuller, G. E. Archer, H. S. Friedman, M. M. Kwatra, S. H. Bigner, and D. D. Bigner, Anti-synthetic peptide antibody reacting at the fusion junction of deletion-mutant epidermal growth factor receptors in human glioblastoma, Proc. Natl. Acad. Sci. USA, 87:4207 (1990).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Herbert E. Fuchs
    • 1
  • Michael R. Zalutsky
    • 2
    • 3
  • Gary E. Archer
    • 3
  • Darell D. Bigner
    • 3
  1. 1.Departments of Surgery (Division of Neurosurgery)Duke University Medical CenterDurhamUSA
  2. 2.Departments of RadiologyDuke University Medical CenterDurhamUSA
  3. 3.Departments of PathologyDuke University Medical CenterDurhamUSA

Personalised recommendations