Dehalogenation of Organohalide Pollutants by Bacterial Enzymes and Coenzymes

  • Lawrence P. Wackett
Part of the Industry-University Cooperative Chemistry Program Symposia book series (IUCC)

Abstract

Organohalides are widespread environmental pollutants which typically contain a carbon-halogen bond. The halogen substituent can be fluorine, chlorine, bromine, or iodine but chlorine is most common. The environmental fate of organohalides is dominated by the chemistry of the carbon-halogen bond of particular compounds. For example, fluorocarbons are particularly inert. This is due in large measure to the high bond dissociation energy of the carbon-fluorine bond which ranges from 106–115 Kcal/mol (Reinecke, 1984). Chlorinated compounds differ markedly in their environmental persistence. Generally, aryl and alkenyl chlorides decompose much more slowly than alkyl chlorides. The former compounds undergo hydrolytic and photolytic cleavage of the carbon-halogen bond much less readily. Environmental organohalides often derive from industrial sources, but many halogenated organic natural products are known as well. Commodity organic chemicals that contain chlorine include vinyl chloride, trichloroethylene, dichloromethane, 1, 2-dichloroethane, and chlorobenzene. Each of these compounds are used by United States industries at levels exceeding ten million pounds annually (Hutzinger & Veerkamp, 1981). Several natural products such as methyl chloride (Wuosmaa & Hager, 1990) and tribromomethane (Gschwend, et al., 1985) are released into the environment at comparable levels on a global scale by fungi and algae, respectively. As an illustration of the complexity of this group of compounds, over 700 halogenated natural products have been identified (Neidleman & Geigert, 1986).

Keywords

Reductive Dechlorination Methyl Chloride Reductive Dehalogenation Toluene Dioxygenase Soluble Methane Monooxygenase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahmed, A. E. & Anders, M. W. 1978. Metabolism of dihalomethanes to formaldehyde and inorganic halide II. Studies on the mechanism of the reaction. Biochem. Pharmacol. 27:2021.PubMedCrossRefGoogle Scholar
  2. Anders, M. W. & Pohl, L. R. 1985. Halogenated alkanes. In “Bioactivation of Foreign Compounds, ” ed. M. W. Anders. Academic Press, New York.Google Scholar
  3. Arciero, D., Vannelli, T., Logan, M. & Hooper, A. B. 1989. Degradation of trichloroethylene by the ammonia-oxidizing bacterium Nitrosomonas europaea. Biochem. Biophys. Res. Commun. 159:640–643.PubMedCrossRefGoogle Scholar
  4. Atlas, R. M. and Bartha, R. 1987. “Microbial Ecology, ” Benjamin/Cumming Pub., Menlo Park, CA.Google Scholar
  5. Au, K. & Walsh, C. T. Stereochemical studies on a plasmid-encoded fluoracetate halidohydrolase. Bioorg. Chem. 12:197–205.Google Scholar
  6. Berry, E. K. M., Allison, N., Skinner, A. J. & Cooper, R. A. 1979. Degradation of the selective herbicide 2, 2-dichloropropionate (dalapon) by a soil bacterium. J. Gen. Microbiol. 110:39–45.CrossRefGoogle Scholar
  7. Böhme, H., Fischer, H. & Frank, R. 1949. Justus Liebig Annln. Chem. 563:54.CrossRefGoogle Scholar
  8. DeWeerd, K. A. & Suflita, J. M. 1990. Anarobic arylreductive dehalogenation of halobenzoates by cell extracts of Desulfomonile tiedjei, Appl. Environ. Microbiol. 56:2999.PubMedGoogle Scholar
  9. Dolfing, J. 1990. Reductive dechlorination of 3-chlorobenzoate is coupled to ATP production and growth in anaerobic bacterium, strain DCB-1. Arch. Microbiol. 153:264–266.PubMedCrossRefGoogle Scholar
  10. Folsom, B. R., Chapman, P. J. & Pritchard, P. H. 1990. Phenol and trichloroethylene degradation by Pseudomonas cepacia G4: Kinetics and interaction between substrates. Appl Environ. Microbiol. 56:1279–1285.PubMedGoogle Scholar
  11. Fox, B. G., Borneman, J. G., Wackett, L. P. & Lipscomb, J. D. 1990. Haloalkene oxidation by the soluble methane monooxygenase from Methylosinus trichosporium OB3b: Mechanistic and environmental implications. Biochemistry 29:6419–6427.PubMedCrossRefGoogle Scholar
  12. Gälli, R., Stucki, G. & Leisinger, T. 1982. Mechanism of dehalogenation of dichloromethane by cell extracts of Hyphomicrobium DM2. Experientia 38:1378.Google Scholar
  13. Gantzer, G. J. & Wackett, L. P. 1991. Reductive dechlorination catalyzed by bacterial transition-metal coenzymes. Environ. Sci Tech. (in press).Google Scholar
  14. Goldman, P., Milne, G. W. A. & Keister, D. B., 1968. Carbon-halogen bond cleavage: Studies on bacterial halidohydrolases. J. Biol Chem. 243:428–434.PubMedGoogle Scholar
  15. Gschwend, P. M., MacFarlane, J. K. & Newman, K. A. 1985. Volatile halogenated organic compounds released to seawater from temparate marine microalgae. Science 227:1033–1035.PubMedCrossRefGoogle Scholar
  16. Hambright, P. 1975. In “Porphyrins and Metalloporphyrins,” Smith, K. M., ed., Elsevier Scientific, Amsterdam, p. 233.Google Scholar
  17. Harker, A. R. & Kim, Y. 1990. Trichloroethylene degradation by two independent aromatic-degrading pathways in Alcaligenes eutrophus JMP134. Appl Environ. Microbiol. 56:1179–1181.PubMedGoogle Scholar
  18. Hogenkamp, H. P. C. 1975. In “Cobalamin: Biochemistry and Pathophysiology,” Babior, B. M., ed, John-Wiley & Sons, NY, p. 21.Google Scholar
  19. Hutzinger, O., Veerkamp, W. 1981. In “Microbial Degradation of Xenobiotic and Recalcitrant Compounds,” Leisinger, T., Cook, A., Hutter, R., Nuesch, J., eds. Academic Press, London, p. 3.Google Scholar
  20. Janssen, D. B., Pries, F., Van der Ploeg, J., Kazemier, B., Terpstra, P., & Witholt, B. 1989. Cloning of 1, 2-dichloroethane degradation genes of Xanthobacter autotrophicus and expression and sequencing of the dhl A. gene. J. Bacteriol. 171:6791.PubMedGoogle Scholar
  21. Kawasaki, H., Miyoshi, K. & Tonomura, K. 1981. Purification, crystallization and properties of haloacetate halidohydrolase from Pseudomonas species. Agric. Biol Chem. 45:543–544.CrossRefGoogle Scholar
  22. Keen, J. H., Habig, W. H. & Jakoby, W. B. 1976. Mechanism for the several activities of the glutathione S-transferases. J. Biol Chem. 251:6183–6188.PubMedGoogle Scholar
  23. Klecka, G. M. & Gonsior, S. J. 1984. Reductive dechlorination of chlorinated methanes and ethanes by reduced iron(II) porphyrins. Chemosphere 13:391.CrossRefGoogle Scholar
  24. Kohler-Staub, D. & Leisinger, T. 1985. Dichloromethane dehalogenase of Hyphomicrobium sp. strain DM2. J. Bacteriol. 162:676–681.PubMedGoogle Scholar
  25. Krone, U. E., Laufer, K., Thauer, R. K. & Hogenkamp, H. P. C. 1989a. Coenzyme F430 as a possible catalyst for the reductive dehalogenation of chlorinated C1 hydrocarbons in methanogenic bacteria. Biochemistry 28:10061–10065.PubMedCrossRefGoogle Scholar
  26. Krone, U. E., Thauer, R. K. & Hogenkamp, H. P. C. 1989b. Reductive dechlorination of chlorinated C1-hydrocarbons mediated by corrinoids. Biochemistry 28:4908–4914.CrossRefGoogle Scholar
  27. Leisinger, T. 1983. Microorganisms and xenobiotic compounds. Experientia 39:1183–1191.PubMedCrossRefGoogle Scholar
  28. Markus, A., Klages, V., Krauss, S., & Lingens, F. 1984. Oxidation and dehalogenation of 4-chlorophenylacetate by a two-component enzyme system from Pseudomonas sp. strain CBS3. J. Bacteriol. 160:618.PubMedGoogle Scholar
  29. Nash, T. 1953. The colorimetric estimation of formaldehyde by means of the Hantzsch reaction. Biochem. J. 55:416–421.PubMedGoogle Scholar
  30. Neidleman, S. L. & J. Geigert. 1986. “Biohalogenation: Principles, Basic Roles and Applications,” John Wiley, New York.Google Scholar
  31. Nelson, M. J., Montgomery, S. O. & Pritchard, P. H. 1988. Trichloroethylene metabolism by microorganisms that degrade aromatic compounds. Appl Environ. Microbiol. 54:604–606.PubMedGoogle Scholar
  32. Oldenhuis, R., Vink, R. L., Vink, J. M., Janssen, D. B. & Witholt, B. 1989. Degradation of chlorinated aliphatic hydrocarbons by Methylosinus trichosporium OB3b expressing soluble methane monooxygenase. Appl. Environ. Microbiol. 55:2819–2826.PubMedGoogle Scholar
  33. Parsons, F., Wood, P. R. & DeMarco, J. 1984. Transformation of tetrachloroethene and trichloroethene in microcosms and groundwater. J. Am. Water Works Assoc. 76:56–59.Google Scholar
  34. Reineke, W. 1984. Microbial degradation of halogenated aromatic compounds. In “Microbial Degradation of Organic Compounds,” Gibson, D. T., ed., Marcel Dekker, New York, pp. 319–360.Google Scholar
  35. Salomaa, P. 1966. Formation of carbonyl groups in hydrolytic reactions. In “The Chemistry of the Carbonyl Group, ” S. Patai, ed. Wiley Interscience, New York, pp. 177–210.Google Scholar
  36. Scholtz, R., Wackett, L. P., Egli, C., Cook, A. M. & Leisinger, T. 1988. Dichloromethane dehalogenase with improved catalytic activity isolated from a fast-growing dichloromethane-utilizing bacterium. J. Bacteriol. 170:5698–5704.PubMedGoogle Scholar
  37. Shaik, S. S. 1985. The collage of SN2 reactivity patterns: A state correlation diagram model. In “Progress in Physical Organic Chemistry,” R. W. Taft, ed., Wiley & Sons, NY.Google Scholar
  38. Storck, W. 1987. Chlorinated solvent use hurt by federal rules. Chem. Eng. News 65:11.Google Scholar
  39. Stucki, G., Gälli, R., Ebersold, H-R. & Leisinger, T. 1981. Dehalogenation of dichloromethane by cell extracts of Hyphomicrobium DM2. Arch. Microbiol. 130:366–371.CrossRefGoogle Scholar
  40. Tsien, H.-C., Brusseau, G. A., Hanson, R. S. & Wackett, L. P. 1989. Biodegradation of trichloroethylene by Methylosinus trichosporium OB3b. Appl. Environ. Microbiol. 55:3155–3161.PubMedGoogle Scholar
  41. Van den Wijngaard, A. J., Reuvekamp, P. T. & Janssen, D. B. 1991 Purification and characterization of haloalcohol dehalogenase from Arthrobacter sp. strain AD2. J. Bacteriol. 173; 124.PubMedGoogle Scholar
  42. Wackett, L. P. & Gibson, D. T. 1988. Degradation of trichloroethylene by toluene dioxygenase in whole cell studies with Pseudomonas putida Fl. Appl. Environ. Microbiol. 54:1703–1708.PubMedGoogle Scholar
  43. Wackett, L. P., Brusseau, G. A. & Hanson, R. S. 1989. Survey of microbial oxygenases: Trichloroethylene degradation by propane-oxidizing bacteria. Appl. Environ. Microbiol. 55:2960–2964.PubMedGoogle Scholar
  44. Walsh, C. T. & Orme-Johnson, W. H. 1987. Nickel enzymes. Biochemistry 26:4901.PubMedCrossRefGoogle Scholar
  45. Winter, R. B., Yen, K.-M. & Ensley, B. D. 1989. Efficient degradation of trichloroethylene by a recombinant Escherichia coll Biotechnology 7:282–285.Google Scholar
  46. Wolfe, R. S. 1985. Unusual coenzymes of methanogenesis. Trends. Biochem. Sci. 10:396.CrossRefGoogle Scholar
  47. Wuosmaa, A. M. & Hager, L. P. 1990. Methyl chloride transferase: A carbocation route for biosynthesis of halometabolites. Science 249:160–162.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Lawrence P. Wackett
    • 1
  1. 1.Gray Freshwater Biological InstituteUniversity of MinnesotaNavarreUSA

Personalised recommendations