Mutations Affecting Protein Folding and Misfolding in Vivo

  • Anna Mitraki
  • Ben Fane
  • Cameron Haase-Pettingell
  • Jonathan King
Part of the Industry-University Cooperative Chemistry Program Symposia book series (IUCC)

Abstract

In vivo folding and in vitro refolding studies of many proteins have established that the polypeptide chain does not attain the native conformation directly, but must pass through partially folded intermediates, (Creighton 1978, Kim and Baldwin 1982, Goldenberg and King 1982). It has often been assumed that such species are conformational subsets of the fully folded native state. In fact the existing data suggest that folding intermediates have properties of their own, not necessarily reflected in the native state (Creighton and Goldenberg, 1984). Numerous cases have now been described in which partially folded intermediates form transient complexes with helper proteins, (chaperonins) within the cells, (Pelham 1986, Hemmingsen et al. 1988, Goloubinoff et al. 1989a, b). The necessity of proteins to fold in physiological environments can explain why intermediates might have distinct properties from those of the native state. These chains may have specific sites and properties that can mediate recognition with molecular chaperones, membrane transport sites and other factors. For proteins destined to be exported through a membrane channel, the chain must be prevented from prematurely reaching the native conformation, (Randall and Hardy, 1988). Thus, folding intermediates must have been evolved with respect to their in vivo folding environments.

Keywords

Folding Pathway Suppressor Mutation Folding Intermediate Altered Electrophoretic Mobility Site Suppressor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alber, T. 1990. Ann. Rev. Biochem. 59: 765–798Google Scholar
  2. Alber, T. and Matthews, C. R. 1987. In Protein Engineering (Oxender, D. and Fox C. eds) Alan Liss Co. N.Y. pp. 289–298.Google Scholar
  3. Creighton, T.E. 1978. Prog. Biophys. Mol. Biol. 33:231–298.PubMedCrossRefGoogle Scholar
  4. Creighton, T.E. and Goldenberg, D.P 1984. J Mol. Biol. 179:497–526.PubMedCrossRefGoogle Scholar
  5. Fane, B and King J., 1991. Genetics 127:263–277PubMedGoogle Scholar
  6. Fane, B., Villafane, R,. Mitraki, A., and King. J. 1991. J. of Biol. Chem. in press.Google Scholar
  7. Fane, B. and King, J., 1987. Genetics 117: 157–171.PubMedGoogle Scholar
  8. Fersht, A., and Leatherbarrow, R. J. 1987. in: Protein Engineering, Oxender, D. and Fox, F. editors, pp 269–278. Alan Liss, New York.Google Scholar
  9. Fuchs, A., Sciderer, C. and Seckler, R. 1991. Biochemistry, in press.Google Scholar
  10. Goldenberg, D. P., Berget, P. B., and King, J., 1982. J. Biol. Chem. 257:7864–7871.PubMedGoogle Scholar
  11. Goldenberg, D.P., Smith, D.H., and King, J. 1983. Proc. Nat. Acad. Sci. USA 80: 7060–7064.PubMedCrossRefGoogle Scholar
  12. Goldenberg, D. and King, J., 1982. Proc. Natl. Acad. Sci. USA 79:3403–3407.PubMedCrossRefGoogle Scholar
  13. Goldenberg, D. and King, J. 1981. J. Mol. Biol. 145:633–651PubMedCrossRefGoogle Scholar
  14. Goldenberg, D.P. 1988. Ann. Rev. Biophys. Biophys. Chem. 17: 481–507.CrossRefGoogle Scholar
  15. Goldenberg, D. and King, J., 1982. Proc. Natl. Acad. Sci. USA 79:3403–3407.PubMedCrossRefGoogle Scholar
  16. Goloubinoff, P., Christeller, J.T., Gatenby, A. A., and Lorimer, G. H. 1989. Nature 342:884–889.PubMedCrossRefGoogle Scholar
  17. Goloubinoff, B., Gatenby, A.A. and Lorimer, G. 1989a. Nature 337: 44–47PubMedCrossRefGoogle Scholar
  18. Haase-Pettingell, C. and King J., 1988. J. Biol. Chem. 263: 4977–4983.PubMedGoogle Scholar
  19. Hecht, M.H., and Sauer, R.T. 1985. J. Mol. Biol. 186, 53–63.PubMedCrossRefGoogle Scholar
  20. Helinski, D.R. and Yanofsky, C. 1963. J. Biol. Chem. 238: 1043–1048.PubMedGoogle Scholar
  21. Hemmingsen, S. M., Woolford, C., van der Vies, S. M., Tilly, K., Dennis, D. T., Georgopoulos, C. P., Hendrix, R. W., and Ellis, R. J. 1988. Nature 333: 330–334.PubMedCrossRefGoogle Scholar
  22. Kelley, R. L. and Yanofsky, C. 1985. P.N.A.S. 82, 483–487.PubMedCrossRefGoogle Scholar
  23. Kim, P.S. and Baldwin, R. L. 1990. Ann. Rev. Biochem. 59 631–660PubMedCrossRefGoogle Scholar
  24. Klig, L.S., Oxender, D.L., and Yanofsky, C. 1988. Genetics 120, 651–655.PubMedGoogle Scholar
  25. Klig, L.S. and Yanofsky, C. 1988. J. Biol. Chem. 263, 243–246.PubMedGoogle Scholar
  26. London J., Skrzynia C., and Goldberg M. 1974. Eur. J. Biochem. 47: 409–415.PubMedCrossRefGoogle Scholar
  27. Marston, F. A. O., 1986. Biochem. J. 240:1–12.PubMedGoogle Scholar
  28. Maurides, P.A., Schwarz, J.J., and Berget, P.B. 1990. Genetics 125: 673–681.PubMedGoogle Scholar
  29. Miller, J.H., Coulondre, C., Hofer, M., Schmeissner, U., Sommer, H., and Schmitz, A. 1979. J. Mol. Biol. 131: 191–222.PubMedCrossRefGoogle Scholar
  30. Mitraki A. and King J. 1989. Bio/Technology 7:690–697CrossRefGoogle Scholar
  31. Mitraki A., Betton J.-M., Desmadril M. and Yon J. 1987. Eur. J. Biochem. 163: 29–34.PubMedCrossRefGoogle Scholar
  32. Mitraki, A., Haase-Pettingell, C. and King, J. 1991. in: Protein refolding, G. Georgiou and E. de Bernardez, eds. American Chemical Society, Washington, D.C.Google Scholar
  33. Mitraki, A., Fane, B. Haase-Pettingell, C., Sturtevant, J., and King, J. 1991. Science, in press.Google Scholar
  34. Nelson, H.C. and Sauer, R.T. 1985. Cell 42, 549–558.PubMedCrossRefGoogle Scholar
  35. Pelham, H. R. B. 1986. Cell 46, 959–961.PubMedCrossRefGoogle Scholar
  36. Poteete, A. R., Dao-Pin, S., Nicholson, H., and Matthews, B. W. 1991. Biochemistry 30, 1425–1432.PubMedCrossRefGoogle Scholar
  37. Randall, L.L. and Hardy, S.J.S. 1988. Science 243: 1156–1159.CrossRefGoogle Scholar
  38. Reidhaar-Olson J. and Sauer, R. 1989. Science 241: 53–57.CrossRefGoogle Scholar
  39. Sadler, J. R. and Novick, A. 1965. J. Mol. Biol. 12:305–327.PubMedCrossRefGoogle Scholar
  40. Sargent, D., Benevides, J.M., Yu, M-h., King, J. and Thomas, Jr., G.J. 1988. J. Mol. Biol. 199: 491–502.PubMedCrossRefGoogle Scholar
  41. Sauer, R. T., Krovatin, W., Poteete, A. R. and Berget, P. B., 1982. Biochem. 21: 5811–5815.CrossRefGoogle Scholar
  42. Schein, C. 1989. Bio/Technology 7:1141–1149Google Scholar
  43. Schwarz, J. and Berget P. 1989. J. Biol. Chem 264: 20112–20119.PubMedGoogle Scholar
  44. Seckler, R. Fuchs, A., King, J. and Jaenicke, R. 1989. J. Biol. Chem. 264:11750–11753PubMedGoogle Scholar
  45. Shortle, D., and Lin, B. 1985. Genetics 110: 539–555.PubMedGoogle Scholar
  46. Shortle, D. 1989. J.Biol. Chem. 264: 5315–5318.PubMedGoogle Scholar
  47. Smith, D.H., Berget, P.B., and King, J., 1980. Genetics 96: 331–352.PubMedGoogle Scholar
  48. Smith, D.H., and King, J., 1981. J. Mol. Biol 145: 653–676.PubMedCrossRefGoogle Scholar
  49. Sturtevant, J., Yu, M-h, Haase-Pettingell, C. and King, J. 1989. J. Biol. Chem. 264:10693–10698PubMedGoogle Scholar
  50. Sugihara, J., and Baldwin, T. O. 1988. Biochemistry 27: 2872–2880.PubMedCrossRefGoogle Scholar
  51. Thomas, G. J. Jr., Becka, R., Sargent, D., Yu, M-H., and King J. 1990. Biochemistry 29:4181–4187.PubMedCrossRefGoogle Scholar
  52. Tsai, A.Y.M., Itoh, M., Streuli, M., Thai, T. and Saito, H. 1991. J. Biol. Chem. 266: 10534–10543PubMedGoogle Scholar
  53. Van Dyk, T. K., Gatenby, A. A. and LaRossa, T. A. 1989. Nature 342: 451–453PubMedCrossRefGoogle Scholar
  54. Villafane R. and King, J. 1988. J. Mol. Biol. 204:607–619PubMedCrossRefGoogle Scholar
  55. Yu, M.-H., and King, J., 1984. Proc. Natl. Acad. Sci. USA. 81: 6584–6588.PubMedCrossRefGoogle Scholar
  56. Yu, M.-H., and King, J., 1988. J. Biol. Chem. 263: 1424–1431PubMedGoogle Scholar
  57. Wetzel, R., Perry, L.J. and Vielleux, C. 1991. Bio/Technology, in press.Google Scholar
  58. Zettlmeissl, G., Rudolph, R., and Jaenicke, R., 1979. Biochemistry 18: 5567–5571.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Anna Mitraki
    • 1
  • Ben Fane
    • 1
  • Cameron Haase-Pettingell
    • 1
  • Jonathan King
    • 1
  1. 1.Department of BiologyMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations