Applications of The Mössbauer Effect to The Characterization of Materials

  • Gary J. Long
  • Fernande Grandjean

Abstract

A Mössbauer spectrum arises from the recoil-free emission and resonant absorption of a γ-ray by a nuclide and is obtained as illustrated schematically in Figure 1. The γ-radiation is emitted from a source containing the radioactive parent isotope, a source which usually decays to a nuclear excited state of the Mössbauer isotope. This excited state decays by recoil-free emission of the Mössbauer γ-radiation with an energy, Eγas shown in Figure 2 for the 14.4 keV or 2.304×10-15 J Mössbauer γ-radiation of iron-57. The transmitted intensity of this radiation, through a solid absorber containing Mössbauer atoms in their ground state, is measured as a function of the γ-ray energy, which is varied by Dop-pler shifting the source relative to the absorber. This explains why the energy scale of a Mössbauer spectrum, as shown in Figure 3, is given in mm/s and why energies are measured in velocity by Mössbauer spectroscopists. The vertical scale of a Mössbauer spectrum is given in percent transmission or percent absorption and the spectral absorption area is an important quantity for the Mössbauer spectroscopist. This area is a measure of the recoil-free fraction of the absorber, which is the fraction of nuclei undergoing recoil-free absorption,1, 2 as will be discussed in Section 2.5.

Keywords

Mossbauer Spectroscopy Isomer Shift Electric Field Gradient Hyperfine Field Quadrupole Interaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. C. Gibb, “Principles of Mössbauer Spectroscopy”, Chapman and Hall, London (1976).Google Scholar
  2. 2.
    G. J. Long, Basic Concepts of Mössbauer Spectroscopy, in “Mössbauer Spectroscopy Applied to Inorganic Chemistry”, Vol. 1, G. J. Long, Ed., Plenum Press, New York (1984) p. 7.Google Scholar
  3. 3.
    G. J. Long, T. E. Cranshaw, and G. Longworth, Mössbauer Effect Ref. Data J., 6, 42 (1983).Google Scholar
  4. 4.
    T. E. Cranshaw, Mössbauer Spectrometers and Calibration, in “Mössbauer Spectroscopy Applied to Inorganic Chemistry”, Vol. 1, G. J. Long, Ed., Plenum Press, New York (1984) p. 27.Google Scholar
  5. 5.
    R. V. Parish, Mössbauer Spectroscopy with the Iodine Isotopes, in “Mössbauer Spectroscopy Applied to Inorganic Chemistry”, Vol. 2, G. J. Long, Ed., Plenum Press, New York (1987) p. 391.Google Scholar
  6. 6.
    A. H. Muir, Jr., K. J. Ando, and H. M. Coogan, “Mössbauer Effect Data Index 1958–1965”, Wiley, New York (1967); J. G. Stevens and V. E. Stevens, “Mössbauer Effect Data Index Covering the 1969, 1970, 1971, 1972, 1973, 1974, 1975, 1976 Literature”, Plenum Press, New York (1970, 1972, 1972, 1973, 1975, 1975, 1976, 1978); J. G. Stevens, V. E. Stevens, P. T. Deason, Jr., A. H. Muir, Jr., H. M. Coogan, and R. W. Grant, “Mössbauer Effect Data Index Covering the 1966–1968 Literature, Plenum Press, New York (1975); Mössbauer Effect Ref. Data J., 1-14, J. G. Stevens, et. al., Eds., Mössbauer Effect Data Center, Asheville, NC (1978-1991).Google Scholar
  7. 7.
    G. J. Long, Mössbauer Spectroscopy as a Structural Probe, in “Mössbauer Spec-troscopy”, D. P. E. Dickson and F. J. Berry, Eds., Cambridge University Press, Cambridge (1986) p. 70.CrossRefGoogle Scholar
  8. 8.
    T. E. Cranshaw and G. Longworth, Mössbauer Spectroscopy of Magnetic Systems, in “Mössbauer Spectroscopy Applied to Inorganic Chemistry”, Vol. 1, G. J. Long, Ed., Plenum Press, New York (1984) p. 171.Google Scholar
  9. 9.
    G. Longworth, Spectral Data Reduction and Refinement, in “Mössbauer Spectroscopy Applied to Inorganic Chemistry”, Vol. 1, G. J. Long, Ed., Plenum Press, New York (1984) p. 43.Google Scholar
  10. 10.
    J. M. D. Coey, Mössbauer Spectroscopy of Silicate Minerals, in “Mössbauer Spectroscopy Applied to Inorganic Chemistry”, Vol. 1, G. J. Long, Ed., Plenum Press, New York (1984) p. 443.Google Scholar
  11. 11.
    E. Murad and J. H. Johnston, Iron Oxides and Oxyhydroxides, in “Mössbauer Spectroscopy Applied to Inorganic Chemistry”, Vol. 2, G. J. Long, Ed., Plenum Press, New York (1989) p. 507.Google Scholar
  12. 12.
    E. Murad, Hyperfine Interactions, 47, 33 (1989).CrossRefGoogle Scholar
  13. 13.
    R. D. Werkman, P. J. Schurer, and F. van der Woude, Hyperfine Interactions, 53, 241 (1990).CrossRefGoogle Scholar
  14. 14.
    S. J. Campbell and F. Aubertin, Evaluation of Distributed Hyperfine Parameters, in “Mössbauer Spectroscopy Applied to Inorganic Chemistry”, Vol. 3, G. J. Long and F. Grandjean, Eds., Plenum Press, New York (1989) p. 183.Google Scholar
  15. 15.
    G. Le Caër and J. M. Dubois, J. Phys. E: Sci. Instrum., 12, 1083 (1979).CrossRefGoogle Scholar
  16. 16.
    U. Gonser, M. Ackermann, H. J. Bauer, N. Blaes, S. M. Fries, R. Gaa, and H. G. Wagner, Mössbauer Spectroscopy in Physical Metallurgy, in “Industrial Applications of the Mössbauer Effect”, G. J. Long and J. G. Stevens, Eds., Plenum Press, New York (1986) p. 25.CrossRefGoogle Scholar
  17. 17.
    G. Longworth, Mössbauer Effect Studies of Metallic Glasses, in “Mössbauer Spectroscopy Applied to Inorganic Chemistry”, Vol. 2, G. J. Long, Ed., Plenum Press, New York (1989) p. 289.Google Scholar
  18. 18.
    Z. M. Stadnik and G. Stroink, Hyperfine Interactions, 47, 275 (1989).CrossRefGoogle Scholar
  19. 19.
    P. Deppe, Y. Khan, M. Rosenberg, M. Sostarich, and A. Schöne-Warnefeld, in “Rapidly Quenched Metals”, Vol. 5, S. Steeb and H. Warlimont, Eds., North-Holland, Amsterdam (1985) p. 1223.Google Scholar
  20. 20.
    C.L. Chien, Hyperfine Interactions, 53, 3 (1990).CrossRefGoogle Scholar
  21. 21.
    K. M. Moorjani and J. M. D. Coey, “Magnetic Glasses”, Elsevier, New York (1988).Google Scholar
  22. 22.
    F. Grandjean, Mössbauer Spectral Lineshapes in the Presence of Electronic State Relaxation, in “The Time Domain in Surface and Structural Dynamics”, G. J. Long and F. Grandjean, Eds., Kluwer Academic Publishers, Dordrecht (1988) p. 287.CrossRefGoogle Scholar
  23. 23.
    G. K. Shenoy, Mössbauer Effect Isomer Shifts, in “Mössbauer Spectroscopy Applied to Inorganic Chemistry”, Vol. 1, G. J. Long, Ed., Plenum Press, New York (1984) p. 57.Google Scholar
  24. 24.
    A. Modaressi, A. Courtois, R. Gérardin, B. Malaman, and C. Gleitzer, J. Solid State Chem., 40, 301 (1981).CrossRefGoogle Scholar
  25. 25.
    M. Ijjaali, B. Malaman, G. Venturini, C. Gleitzer, G. J. Long, and F. Grandjean, J. Solid State Chem., submitted for publication.Google Scholar
  26. 26.
    F. Grandjean, G. J. Long, D. E. Tharp, O. A. Pringle, and W. J. James, J. Physique, Coll., 49, C8–581 (1988).Google Scholar
  27. 27.
    R. H. Herber, Structure, Bonding, and the Mössbauer Lattice Temperature, in “Chemical Mössbauer Spectroscopy”, R. H. Herber, Ed., Plenum Press, New York (1984) p. 199.CrossRefGoogle Scholar
  28. 28.
    B. Kolk, Studies of Dynamical Properties of Solids with the Mössbauer Effect, in “Dynamic Properties of Solids”, G. K. Horton and A. A. Maradudin, Eds., North-Holland, Amsterdam (1984) p. 5.Google Scholar
  29. 29.
    N. N. Greenwood and T. C. Gibb, “Mössbauer Spectroscopy”, Chapman and Hall, London (1981).Google Scholar
  30. 30.
    W. M. Reiff, Coord, Chem. Rev., 10, 37 (1973).CrossRefGoogle Scholar
  31. 31.
    H. Spiering, The Electric Field Gradient and the Quadrupole Interaction, in “Mössbauer Spectroscopy Applied to Inorganic Chemistry”, Vol. 1, G. J. Long, Ed., Plenum Press, New York (1984) p. 77.Google Scholar
  32. 32.
    O. A. Pringle and G. J. Long, Mössbauer Effect Studies of Hard Magnetic Materials, in “Mössbauer Spectroscopy Applied to Inorganic Chemistry”, Vol. 3, G. J. Long and F. Grandjean, Eds., Plenum Press, New York (1989) p. 13.Google Scholar
  33. 33.
    G. J. Long and F. Grandjean, The Mössbauer Effect and its Application to Hard Permanent Magnetic Materials, in “Supermagnets, Hard Magnetic Materials”, G. J. Long and F. Grandjean, Eds., Kluwer Academic Publishers, Dordrecht (1991) p. 355.CrossRefGoogle Scholar
  34. 34.
    S. M. Dubiel, Z. Zurek, and M. Przybylski, Sulfidation-induced Changes in Iron-Aluminum and Iron-Silicon Alloys, in “Industrial Applications of the Mössbauer Effect”, G. J. Long and J. G. Stevens, Eds., Plenum Press, New York (1986) p. 217.CrossRefGoogle Scholar
  35. 35.
    B. Fultz and J. W. Morris, Jr., Hyperfine Fields in Fe-Ni-X Alloys and Their Application to a Study of Tempering of 9NI Steel, in “Industrial Applications of the Mössbauer Effect”, G. J. Long and J. G. Stevens, Eds., Plenum Press, New York (1986) p. 237.CrossRefGoogle Scholar
  36. 36.
    A. J. Freeman, Phys. Rev., 130, 888 (1963).CrossRefGoogle Scholar
  37. 37.
    R. Coehoorn, C. J. M. Denissen, and R. Eppenga, J. Appl. Phys., (1991), in press.Google Scholar
  38. 38.
    R. Coehoorn, J. Magn. Magn. Mat., submitted for publication.Google Scholar
  39. 39.
    M. F. Thomas and C. E. Johnson, Mössbauer Spectroscopy of Magnetic Solids, in “Mössbauer Spectroscopy”, D. P. E. Dickson and F. J. Berry, Eds., Cambridge University Press, Cambridge (1986) p. 143.CrossRefGoogle Scholar
  40. 40.
    C. Wivel and S. Mørup, J. Phys. E, 14, 605 (1981).CrossRefGoogle Scholar
  41. 41.
    R. E. Vandenberghe, D. Gryffroy, and E. De Grave, Nucl. Instrum. Methods, B26, 603 (1987).Google Scholar
  42. 42.
    M. E. Lines and M. Eibschütz, Phys. Rev. B, 25, 6042 (1982).CrossRefGoogle Scholar
  43. 43.
    M. M. Amini, T. P. Fehlner, G. J. Long, and M. Politowski, Chem. Materials, 2; 432 (1990).CrossRefGoogle Scholar
  44. 44.
    S. V. Karyagin, Sov. Phys. Solid State, 8, 391 (1966).Google Scholar
  45. 45.
    E. R. Bauminger and I. Nowik, The Dynamics of Nuclei Studied by Mössbauer Spectroscopy, in “Mössbauer Spectroscopy”, D. P. E. Dickson and F. J. Berry, Eds., Cambridge University Press, Cambridge (1986) p. 219.CrossRefGoogle Scholar
  46. 46.
    R. W. Grant, R. M. Housley, and U. Gonser, Phys. Rev., 178, 523 (1969).CrossRefGoogle Scholar
  47. 47.
    R. D. Ernst, D. R. Wilson, and R. H. Herber, J. Am. Chem. Soc, 106, 1646 (1984).CrossRefGoogle Scholar
  48. 48.
    P. Adler, L. Wiehl, E. Meissner, C. P. Köhler, H. Spiering, and P. Gütlich, J. Phys. Chem. Solids, 48, 517 (1987).CrossRefGoogle Scholar
  49. 49.
    J. F. Fiddy, I. Hall, F. Grandjean, G. J. Long, and U. Russo, J. Phys.: Condens. Matter, 2, 10091 (1990).CrossRefGoogle Scholar
  50. 50.
    G. R. Hoy, Relaxation Phenomena for Chemists, in “Mössbauer Spectroscopy Applied to Inorganic Chemistry”, Vol. 1, G. J. Long, Ed., Plenum Press, New York (1984)p. 195.Google Scholar
  51. 51.
    S. Dattagupta, Time-dependent Effects and Relaxation in Mössbauer Spectroscopy, in “Mössbauer Spectroscopy”, D. P. E. Dickson and F. J. Berry, Eds., Cambridge University Press, Cambridge (1986) p. 198.CrossRefGoogle Scholar
  52. 52.
    B. W. Fitzsimmons and A. R. Hume, J. Chem. Soc, Dalton Trans., 180 (1980).Google Scholar
  53. 53.
    F. Grandjean, G. J. Long, B. B. Hutchinson, L. Ohlhausen, P. Neill, and J. D. Holcomb, Inorg. Chem., 28, 4406 (1989).CrossRefGoogle Scholar
  54. 54.
    Y. Maeda, N. Tsutsumi, and Y. Takashima, Inorg. Chem., 23, 2440 (1984); Y. Maeda, H. Oshio, Y. Takashima, M. Mikuriya, and H. Idaka, Inorg. Chem., 25, 2958 (1986)CrossRefGoogle Scholar
  55. 55.
    F. J. Litterst and G. Amthauer, Phys. Chem. Minerals, 10, 250 (1984).CrossRefGoogle Scholar
  56. 56.
    H. Eckert, Mössbauer Spectroscopy of Mixed-Valence Compounds, in “Mössbauer Spectroscopy Applied to Inorganic Chemistry”, Vol. 2, G. J. Long, Ed., Plenum Press, New York (1989) p. 125.Google Scholar
  57. 57.
    S. Mørup, Mössbauer Effect Studies of Microcrystalline Materials, in “Mössbauer Spectroscopy Applied to Inorganic Chemistry”, Vol. 2, G. J. Long, Ed., Plenum Press, New York (1989) p. 89.Google Scholar
  58. 58.
    S. Mørup, Mössbauer Spectroscopy Studies of Relaxation Phenomena in Ultrafine Particles, in “The Time Domain in Surface and Structural Dynamics”, G. J. Long and F. Grandjean, Eds., Kluwer Academic Publishers, Dordrecht (1988) p. 309.CrossRefGoogle Scholar
  59. 59.
    S. Mørup, Mössbauer Spectroscopy Studies of Paramagnetic Relaxation, in “The Time Domain in Surface and Structural Dynamics”, G. J. Long and F. Grandjean, Eds., Kluwer Academic Publishers, Dordrecht (1988) p. 321.CrossRefGoogle Scholar
  60. 60.
    A. Beran and H. Bittner, Tschermaks Min. Petr. Mitt, 21, 11 (1974).CrossRefGoogle Scholar
  61. 61.
    P. Bartholomé, J. C. Duchesne, and L. Van Der Plas, Ann. Soc. Géol. Belgique, 90, 780 (1968).Google Scholar
  62. 62.
    L. W. Finger, R. M. Hazen, J. M. Hughes, Ann. Report Carnegie Inst. Yearb., 81, 386 (1982).Google Scholar
  63. 63.
    S. Ghose, A. W. Hewat, and M. Marezio, Phys. Chem. Minerals, 11, 67 (1984).CrossRefGoogle Scholar
  64. 64.
    S. Ghose, K. Tsukimura, and D. M. Hatch, Phys. Chem. Minerals, 16, 483 (1989).Google Scholar
  65. 65.
    A. Gérard and F. Grandjean, Solid State Comm., 9, 1845 (1971).CrossRefGoogle Scholar
  66. 66.
    I. U. Heilmann, N. B. Olsen, and J. S. Olsen, Physica Scripta, 15, 285 (1977).CrossRefGoogle Scholar
  67. 67.
    C. L. Herzenberg and D. L. Riley, Acta Cryst., A25, 389 (1969).Google Scholar
  68. 68.
    F. Grandjean and A. Gérard, Solid State Comm., 16, 553 (1975).CrossRefGoogle Scholar
  69. 69.
    D. A. Nolet, Solid State Comm., 28, 719 (1978).CrossRefGoogle Scholar
  70. 70.
    D. A. Nolet and R. G. Burns, Phys. Chem. Minerals, 4, 221 (1979).CrossRefGoogle Scholar
  71. 71.
    B. J. Evans and G. Amthauer, J. Phys. Chem. Solids, 41, 985 (1980).CrossRefGoogle Scholar
  72. 72.
    J. M. D. Coey, J. Allan, K. Xuemin, N. Van Dang, S. Ghose, J. Appl. Phys., 55, 1963 (1984).CrossRefGoogle Scholar
  73. 73.
    T. Yamanaka and Y. Takeuchi, Phys. Chem. Minerals, 4, 149 (1979).CrossRefGoogle Scholar
  74. 74.
    K. Xuemin, S. Ghose, and B. D. Dunlap, Phys. Chem. Minerals, 16, 55 (1988).CrossRefGoogle Scholar
  75. 75.
    W. D. Townes, J. H. Fang, and AJ. Perotta, Z. Krist., 125, 437 (1967).CrossRefGoogle Scholar
  76. 76.
    X. Obradors, A. Collomb, M. Pernet, D. Samaras, and J. C. Joubert, J. Solid State Chem., 56, 171 (1985).CrossRefGoogle Scholar
  77. 77.
    J. G. Rensen and J. S. van Wieringen, Solid State Comm., 7, 1139 (1969).CrossRefGoogle Scholar
  78. 78.
    J. G. Rensen, J. A. Schulkes, and J. S. van Wieringen, J. Physique, Colloq., 32, C1–924 (1971).Google Scholar
  79. 79.
    E. Kreber, U. Gonser, A. Trautwein, and F. E. Harris, J. Phys. Chem. Solids, 36, 263 (1975).CrossRefGoogle Scholar
  80. 80.
    A. A. Bahgat and M. K. Fayek, Hyperfine Interactions, 8, 249 (1980).CrossRefGoogle Scholar
  81. 81.
    J. Fontcuberta, A. Isalgué, and X. Obradors, Z. Phys. B-Condensed Matter 70, 379 (1988).CrossRefGoogle Scholar
  82. 82.
    J. Fontcuberta and X. Obradors, J. Phys. C: Solid State Phys., 21, 2335 (1988).CrossRefGoogle Scholar
  83. 83.
    X. Li and L. Zeng, Solid State Comm., 75, 851 (1990).CrossRefGoogle Scholar
  84. 84.
    G. K. Thompson and B. J. Evans, J. Magn. Magn. Mat., 95, L142 (1991).CrossRefGoogle Scholar
  85. J.
    Fontcuberta, W. Reiff, and X. Obradors, J. Phys.: Conden. Mat., 3, 2131 (1991).CrossRefGoogle Scholar
  86. 85.
    B. J. Evans, F. Grandjean, A. P. Lilot, R. H. Vogel, and A. Gérard, J. Magn. Magn. Mat, 67, 123 (1987).CrossRefGoogle Scholar
  87. 86.
    A. Trautwein, E. Kreber, U. Gonser, and F. E. Harris, J. Phys. Chem. Solids, 36, 325 (1975).CrossRefGoogle Scholar
  88. 87.
    X. Obradors, A. Isalgué, J. Rodriguez, and J. Tejada, Cryst. Latt. Defect Amorph. Mater., 16, 31 (1987).Google Scholar
  89. 88.
    X. Obradors, X. Solans, A. Collomb, D. Samaras, J. Rodriguez, M. Pernet, and M. Font-Altaba, J. Solid State Chem., 72, 218 (1988).CrossRefGoogle Scholar
  90. 89.
    G. N. Belozerskii and Y. P. Khimich, Sov. Phys.-Solid State, 17, 871 (1975).Google Scholar
  91. 90.
    W. Petry, G. Vogl, and W. Mansel, Phys. Rev. Lett, 45, 1862 (1980).CrossRefGoogle Scholar
  92. 91.
    W. Petry, G. Vogl, and W. Mansel, Z. Phys. B 46, 319 (1982).CrossRefGoogle Scholar
  93. 92.
    S. Mantl, W. Petry, K. Schroeder, and G. Vogl, Phys. Rev. B, 27, 5313 (1983).CrossRefGoogle Scholar
  94. 93.
    A. L. Robinson, Science, 223, 920 (1984).CrossRefGoogle Scholar
  95. 94.
    G. J. Long and F. Grandjean, Historical Background and Introduction to Hard Magnetic Materials, in “Supermagnets, Hard Magnetic Materials”, G. J. Long and F. Grandjean, Eds., Kluwer Academic Publishers, Dordrecht (1991) p. 1.CrossRefGoogle Scholar
  96. 95.
    G. J. Long and F. Grandjean, Eds., “Supermagnets, Hard Magnetic Materials”, Kluwer Academic Publishers, Dordrecht (1991).CrossRefGoogle Scholar
  97. 96.
    J. F. Herbst, J. J. Croat, F. E. Pinkerton, and W. B. Yelon, Phys. Rev. B, 29, 4176 (1984).CrossRefGoogle Scholar
  98. 97.
    H. Onodera, A. Fujita, H. Yamamoto, M. Sagawa, and S. Hirosawa, J. Magn. Magn. Mat, 68, 6 (1987).CrossRefGoogle Scholar
  99. H. Onodera, H. Yamauchi, M. Yamada, H. Yamamoto, M. Sagawa, and S. Hirosawa, J. Magn. Magn. Mat, 68, 15 (1987).CrossRefGoogle Scholar
  100. 98.
    M. Rosenberg, P. Deppe, and T. Sinnemann, Hyperfine Interactions, 45, 3 (1989).CrossRefGoogle Scholar
  101. 99.
    F. Grandjean, G. J. Long, O. A. Pringle, and J. Fu, Hyperfine Interactions, 62, 131 (1990).CrossRefGoogle Scholar
  102. 100.
    L. Gelato, J. Appl. Cryst., 14, 141 (1981).CrossRefGoogle Scholar
  103. 101.
    Y. D. Zhang, J. I. Budnick, D. P. Yang, E. Potenziani, A. T. Pedziwiatr, W. E Wallace, and M. Sagawa, J. Magn. Magn. Mat, 79, 136 (1989).CrossRefGoogle Scholar
  104. 102.
    J. I. Budnick, M. Wojcik, Y. D. Zhang, K. Erdmann, and M. Rosenberg, Some Nuclear Magnetic Resonance Results on Nd-Fe-B Phases, in “Supermagnets, Hard Magnetic Materials”, G. J. Long and F. Grandjean, Eds., Kluwer Academic Publishers, Dordrecht (1991) p. 283.CrossRefGoogle Scholar
  105. 103.
    O. A. Pringle, J. Fu, G. J. Long, W. J. James, D. Xie, W. B. Yelon, and F. Grandjean, J. Appl Phys., 67, 4762 (1990).CrossRefGoogle Scholar
  106. 104.
    K. H. J. Buschow, Novel Permanent Magnet Materials, in “Supermagnets, Hard Magnetic Materials”, G. J. Long and F. Grandjean, Eds., Kluwer Academic Publishers, Dordrecht (1991) p. 49.CrossRefGoogle Scholar
  107. 105.
    P. C. M. Gubbens, A. M. van der Kraan, and K. H. J. Buschow, Hyperfine Interactions, 53, 37 (1990).CrossRefGoogle Scholar
  108. K. H J. Buschow, J. W. C. de Vries, and R. C. Thiel, Physica, 132B, 13 (1985).Google Scholar
  109. K. H. J. Buschow, J. W. C. de Vries, and R. C. Thiel, J. Phys. F, 15, L93 (1985).CrossRefGoogle Scholar
  110. 106.
    M. Bogé, G. Czjzek, D. Givord, C. Jeandey, H. S. Li, and J. L. Oddou, J. Phys. F., 16, L67 (1986).CrossRefGoogle Scholar
  111. 107.
    G. Czjzek, H. J. Bornemann, and H. S. Li, J. Magn. Magn. Mat, 80, 23 (1989).CrossRefGoogle Scholar
  112. 108.
    M. Bogé, J. M. D. Coey, G. Czjzek, D. Givord, C. Jeandey, H. S. Li, and J. L. Oddou, Solid State Comm., 55, 295 (1985).CrossRefGoogle Scholar
  113. 109.
    C. J. M. Denissen, B. D. de Mooij, and K. H. J. Buschow, J. Less-Common Met, 139, 291 (1988).CrossRefGoogle Scholar
  114. 110.
    R. Verhoef, F. R. de Boer, F. Yang, Z. Zhang, B. D. de Mooij, and K. H. J. Buschow, J. Magn. Magn. Mat, 80, 37 (1989).CrossRefGoogle Scholar
  115. 111.
    G. J. Long, O. A. Pringle, G. K. Marasinghe, F. Grandjean, and K. H. J. Buschow, J. Appl. Phys., 69, 6040 (1991).CrossRefGoogle Scholar
  116. 112.
    R. van Mens, D. B. de Mooij, and K. H. J. Buschow, J. Appl. Phys., 64, 5708 (1988).CrossRefGoogle Scholar
  117. 113.
    G. J. Long, O. A. Pringle, R. Kulasekere, F. Grandjean, and K. H. J. Buschow, in preparation.Google Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Gary J. Long
    • 1
  • Fernande Grandjean
    • 2
  1. 1.Department of ChemistryUniversity of Missouri-RollaRollaUSA
  2. 2.Institut de Physique, B5Université de LiègeSart-TilmanBelgium

Personalised recommendations