Angiogenesis pp 415-426 | Cite as

Scatter Factor as a Mediator of Tumor Angiogenesis

  • Eliot M. Rosen
  • Katrin Lamszus
  • John Laterra
  • Peter J. Polverini
  • Jeffrey S. Rubin
  • Itzhak D. Goldberg
Chapter
Part of the NATO ASI Series book series (NSSA, volume 298)

Abstract

Scatter factor (SF) (also known as hepatocyte growth factor (HGF)) is an invasogenic and angiogenic cytokine that has been implicated in diverse biologic processes, including organ regeneration, embryogenesis, wound healing, and carcinogenesis (reviewed in Rosen et al., 1994c). SF-induced biologic responses are mediated through the canonical SF receptor, a transmembrane protein tyrosine kinase encoded by a proto-oncogene (c-Met) (Bottaro et al., 1991; Gonzatti-Haces et al., 1988). Two years ago, at the NATO Advanced Study Institute conference on “Molecular, Cellular, and Clinical Aspects of Angiogenesis”, we presented our studies on the ability of SF to induce an angiogenic phenotype in cultured vascular endothelial cells and to induce new blood vessel formation in several in vivo assays of angiogenesis, including the mouse Matrigel assay and the rat corneal neovascularization assay. We also presented data suggesting a prominent role for SF and the c-Met receptor in the pathogenesis of AIDS-related Kaposi’s sarcoma, a tumor associated with prominent components of endothelial cell proliferation and angiogenesis. These studies are reviewed in two chapters in the Nato Series A: Life Sciences Vol. 285 (see Rosen and Goldberg, 1996; Rosen et al., 1996b). Additional information can be found in the original references (see Rosen et al., 1991a and b; Grant et al., 1993; Naidu et al., 1994; Rosen and Goldberg, 1995).

Keywords

Hepatocyte Growth Factor Tumor Angiogenesis Transitional Cell Carcinoma Scatter Factor Infiltrate Ductal Carcinoma 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ben Av P, Crofford LJ, Wilder RL, Hla T. Induction of vascular endothelial growth factor expression in synovial fibroblasts by prostaglandin E and interleukin-1: a potential mechanism for inflammatory angiogene-sis. FEBS Lett 372: 83–87, 1995.CrossRefGoogle Scholar
  2. Bosari S, Lee AK, DeLellis RA, Wiley BD, Heatley GJ, Silverman ML. Microvessel quantitation and prognosis in invasive breast carcinoma. Hum Pathol 23: 755–761, 1992.PubMedCrossRefGoogle Scholar
  3. Bottaro DP, Rubin JS, Faletto DL, Chan AM-L, Kmiecik TE, Vande Woude GF, Aaronson SA. Identification of the hepatocyte growth factor receptor as the c-met proto-oncogene product. Science 251: 802–804, 1991.PubMedCrossRefGoogle Scholar
  4. Chan AM-L Rubin JS, Bottaro DP, Hirschfield DW, Chedid M, Aaronson SA: Identification of a competitive antagonist encoded by an alternative transcript. Science 254: 1382–1385, 1991.PubMedCrossRefGoogle Scholar
  5. Cioce V, Csaky KG, Chan AM-L, Bottaro DP, Taylor WG, Jemsen R, Aaronson SA, Rubin JS. HGF/NK1 is a naturally occurring HGF/SF variant with partial agonist/antagonist activity. J Biol Chem 271: 13110–13115, 1996.PubMedCrossRefGoogle Scholar
  6. Dinarello. Biologic basis for interleukin-1 in disease. Blood 87: 2095–2147, 1996.PubMedGoogle Scholar
  7. Fan TP, Hu DE, Guard S, Gresham GA, Watling KJ. Stimulation of angiogenesis by substance P and interleukin-1 in the rat and its inhibition by NK1 or interleukin-1 receptor antagonists. Brit J Pharmacol 110: 43–49, 1993.CrossRefGoogle Scholar
  8. Gonzatti-Haces M, Seth A, Park M, Copeland T, Oroszlan S, Vande Woude GF. Characterization of the TPR-MET oncogene p65 and the MET protooncogene p140 protein tyrosine kinases. PNAS USA 85: 21–25, 1988.PubMedCrossRefGoogle Scholar
  9. Grant DS, Kleinman HK, Goldberg ID, Bhargava M, Nickoloff BJ, Polverini P, Rosen EM. Scatter factor induces blood vessel formation in vivo. PNAS USA 90: 1937–1941, 1993.CrossRefGoogle Scholar
  10. Jin L, Fuchs A, Schnitt SS, Yao Y, Joseph A, Lamszus K, Park M, Goldberg ID, Rosen EM. Expression of SF and c-met receptor in benign and malignant breast tissue. Cancer 79: 749–760, 1997.PubMedCrossRefGoogle Scholar
  11. Jin L, Yuan R-Q, Fuchs A, Yao Y, Joseph A, Schwall R, Guida A, Schnitt SJ, Hastings HM, Andres J, Turkei G, Polverini PJ, Goldberg ID, Rosen EM. Expression of IL-1 in human breast cancer. Cancer, in press. Google Scholar
  12. Joseph A, Weiss GH, Jin L, Fuchs A, Chowdhury S, O’Shaughnessy P, Goldberg ID, Rosen EM. Expression of scatter factor in human bladder carcinoma. J Natl Cancer Inst 87: 372–377, 1995.PubMedCrossRefGoogle Scholar
  13. Lamszus K, Jin L, Fuchs A, Shi YE, Chowdhury S, Yao Y, Polverini PJ, Goldberg ID, Rosen EM. Scatter factor stimulates tumor growth and tumor angiogenesis in human breast cancers in the mammary fat pads of nude mice. Lab Invest 76: 339–353, 1997.PubMedGoogle Scholar
  14. Lamszus K, Schmidt NO, Jin L, Laterra J, Zagzag D, Way D, Witte M, Weinand M, Goldberg ID, Westfal M, Rosen EM. Scatter factor promotes motility of human glioma and neuromicrovascular endothelial cells. Submitted for publication.Google Scholar
  15. Laterra J, Rosen E, Nam M, Rangathan S, Fielding K, Johnston P. Scatter factor/hepatocyte growth factor expression enhances human glioblastoma tumorigenicity and growth. Biochem Biophys Res Commun, in press. Google Scholar
  16. Laterra J, Nam M, Rosen EM, Rao JS, Lamszus K, Johnston P. Scatter factor/hepatocyte growth factor gene transfer enhances glioma growth and angiogenesis in vivo. Lab Invest 76: 565–577, 1997.PubMedGoogle Scholar
  17. Lokker NA, Mark MR, Luis EA, Bennett GL, Robbins KA, Baker JB, Godowski PJ. Structure- function analysis of hepatocyte growth factor: Identification of variants that lack mitogenic activity yet retain high affinity receptor binding. EMBO J 11:2403–2410, 1992.Google Scholar
  18. Mark MR, Lokker NA, Zioncheck TF, Luis EA, Godowski PJ. Expression and characterization of hepatocyte growth factor receptor-IgG fusion proteins. Effects of mutations in the potential proteolytic cleavage sites on processing and ligand binding. J Biol Chem 267: 26166–26171, 1992.PubMedGoogle Scholar
  19. Naidu YM, Rosen EM, Zitnik R, Goldberg I, Park M, Naujokas M, Polverini PJ, Nickoloff BJ. Role of scatter factor in the pathogenesis of AIDS-related Kaposi’s sarcoma. PNAS USA 91: 5281–5285, 1994.PubMedCrossRefGoogle Scholar
  20. Rosen EM, Goldberg ID: Scatter factor and angiogenesis. Adv Cancer Res 67: 257–279. 1995.PubMedCrossRefGoogle Scholar
  21. Rosen EM, Goldberg ID. Scatter factor as a potential tumor angiogenesis factor. In: “Molecular, Cellular, and Clinical Aspects of Angiogenesis”, Maragoudaikis ME, editor, NATO ASI Series, Series A: Life Sciences, Vol. 285, Plenum Press, New York, 1996, pp. 85–94.CrossRefGoogle Scholar
  22. Rosen EM, Grant D, Kleinman H, Jaken S, Donovan MA, Setter E, Luckett PM, Carley W. Scatter factor stimulates migration of vascular endothelium and capillary-like tube formation. In: “Cell Motility Factors”, Goldberg ID, Rosen EM, eds., Birkhauser-Verlag, Basel, 1991a, pp 76–88.CrossRefGoogle Scholar
  23. Rosen EM, Jaken S, Carley W, Setter E, Bhargava M, Goldberg ID. Regulation of motility in bovine brain endothelial cells. J Cell Physiol 146: 325–335, 1991b.PubMedCrossRefGoogle Scholar
  24. Rosen EM, Joseph A, Jin L, Rockwell S, Elias JA, Knesel J, Wines J, McClellan J, Kluger MJ, Goldberg ID, Zitnik R. Regulation of scatter factor production via a soluble inducing factor. J Cell Biol 127: 225–234, 1994a.PubMedCrossRefGoogle Scholar
  25. Rosen EM, Knesel J, Goldberg ID, Bhargava M, Joseph A, Zitnik R, Wines J, Kelley M, Rockwell S. Scatter factor modulates the metastatic phenotype of the EMT6 mouse mammary tumor. Int J Cancer 57: 706–714, 1994b.PubMedCrossRefGoogle Scholar
  26. Rosen EM, Nigam SK, Goldberg ID. Mini-Review: Scatter factor and the c-met receptor: A paradigm for mesenchymal:epithelial interaction. J Cell Biol 127: 1783–1787, 1994c.PubMedCrossRefGoogle Scholar
  27. Rosen EM, Joseph A, Jin L, Yao Y, Chau M-H, Fuchs A, Gomella L, Hasings H, Goldberg ID, Weiss GH. Urinary and tissue levels of scatter factor in transitional cell carcinoma of bladder. J Urol 157:72–78, 1997.PubMedCrossRefGoogle Scholar
  28. Rosen EM, Laterra J, Joseph A, Jin L, Fuchs A, Way D, Witte M, Weinand M, Goldberg ID. Scatter factor expression and regulation in human glial tumors. Int J Cancer 67: 248–255, 1996a.PubMedCrossRefGoogle Scholar
  29. Rosen EM, Polverini PJ, Nickoloff BJ, Goldberg ID. Role of scatter factor in pathogenesis of AIDS-related Kaposi sarcoma. In: “Molecular, Cellular, and Clinical Aspects of Angiogenesis”, Maragoudaikis ME, editor, NATO ASI Series, Series A: Life Sciences, Vol. 285, Plenum Press, New York, 1996b, pp. 181–190.CrossRefGoogle Scholar
  30. Stoker M, Gherardi E, Perryman M, Gray J. Scatter factor is a fibroblast-derived modulator of epithelial cell mobility. Nature 327: 238–242, 1987.CrossRefGoogle Scholar
  31. Tamura M, Arakaki N, Tsoubouchi H, Takada H, Daikuhara Y Enhancement of human hepatocyte growth factor production by interleukin-1 alpha and -1 beta and tumor necrosis factor-alpha by fibroblasts in culture. J Biol Chem 268: 8140–8145, 1993.PubMedGoogle Scholar
  32. Tolsma SS, Volpert OV, Good DJ, Frazier WA, Polverini PJ, Bouck N. Peptides derived from two separate domains of the matrix protein thrombospondin-1 have antiangiogenic activity. J Cell Biol 122: 497–511, 1993.PubMedCrossRefGoogle Scholar
  33. Tuck AB, Park M, Sterns EE, Boag A, Elliott BE. Coexpression of hepatocyte growth factor and receptor (Met) in human breast carcinoma. Am J Pathol 148: 225–232, 1996.PubMedGoogle Scholar
  34. Wang Y, Seiden AC, Morgan N, Stamp GW, Hodgson HJ. Hepatocyte growth factor/scatter factor expression in human mammary epithelium. Am J Pathol 144: 675–682, 1994.PubMedGoogle Scholar
  35. Weidner N, Semple JP, Welch WR, Folkman J. Tumor angiogenesis and metastasis — correlation in invasive breast carcinoma. New Engl J Med 324: 1–8, 1991.PubMedCrossRefGoogle Scholar
  36. Weidner N, Folkman J, Pozza F, Bevilaqua P, Allred EN, Moore DH, Meli S, Gasparini G. Tumor angiogenesis: a new significant and independent prognostic indicator in early stage breast carcinoma. JNCI 84: 1875–1887, 1992.PubMedCrossRefGoogle Scholar
  37. Yamashita J, Ogawa M, Yamashita S, Nomura K, Kuramoto M, Saishoji T, Sadahito S. Immunoreactive hepatocyte growth factor is a strong and independent predictor of recurrence and survival in human breast cancer. Cancer Res 54: 1630–1633, 1994.PubMedGoogle Scholar
  38. Yao Y, Jin L, Fuchs A, Joseph A, Hastings H, Goldberg ID, Rosen EM. Scatter factor protein levels in human breast cancers: Clinicopathologic and biologic correlations. Am J Pathol 149: 1707–1717, 1996.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Eliot M. Rosen
    • 1
  • Katrin Lamszus
    • 1
    • 5
  • John Laterra
    • 2
  • Peter J. Polverini
    • 3
  • Jeffrey S. Rubin
    • 4
  • Itzhak D. Goldberg
    • 1
  1. 1.Department of Radiation OncologyLong Island Jewish Medical CenterNew Hyde ParkUSA
  2. 2.Departments of Neurology, Oncology, and NeuroscienceThe Johns Hopkins School of Medicine and Kennedy-Krieger Research InstituteBaltimoreUSA
  3. 3.Department of Oral PathologyUniversity of Michigan School of DentistryAnn ArborUSA
  4. 4.Laboratory of Cellular and Molecular BiologyNational Cancer InstituteBethesdaUSA
  5. 5.Department of NeuropathologyUniversity Hospital EppendorfHamburgGermany

Personalised recommendations