Free-Space Optical Hardware

  • H. Scott Hinton
  • J. R. Erickson
  • T. J. Cloonan
  • F. A. P. Tooley
  • F. B. McCormick
  • A. L. Lentine
Part of the Applications of Communications Theory book series (ACTH)

Abstract

Free-space digital optics is a topic based on many disciplines: nonlinear optics, computer and switching network architectural design, semiconductor physics, mechanical design, and, of course, optical system design. Initial work in this area concentrated on the discovery and development of nonlinear optical effects with which to form optical switching devices or logic gates. Progress on the device front stimulated research on switching and computing architectures to capitalize on the potential advantages of free-space digital optics. However, without arrays of practical devices, realistic demonstrations of these architectures were not possible. With the development of batch-fabricated symmetric SEEDs, nonlinear interference filters, and liquid-crystal and magneto-optic spatial light modulators, more complex system experiments became possible.(1–5) The demonstration of these experiments required careful attention to the optical and opto-mechanical system design, in addition to significant device and architectural research.

Keywords

Spherical Aberration Polarization Beam Splitter Wavefront Aberration Fourier Plane Beam Array 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. B. McCormick, F. A. P. Tooley, J. M. Sasian, J. L. Brubaker, A. L. Lentine, T. J. Cloonan, R. L. Morrison, S. L. Walker, and R. J. Crisci, Parallel interconnection of two 64 x 32 symmetric self electro-optic effect device arrays, Electron. Lett. 27, 1869–1871 (1991).CrossRefGoogle Scholar
  2. 2.
    F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. L. Brubaker, A. L. Lentine, R. L. Morrison, S. J. Hinterlong, M. J. Herron, S. L. Walker, and J. M. Sasian, S-SEED based photonic switching network demonstration in: OSA Proceedings on Photonic Switching (H. S. Hinton and J. W. Goodman, eds.), Vol. 8, pp. 48–55, Optical Society of America, Washington, D.C. (1991).Google Scholar
  3. 3.
    T. J. Cloonan, M. J. Herron, F. A. P. Tooley, G. W. Richards, F. B. McCormick, E. Kerbis, J. L. Brubaker, and A. L. Lentine, An all-optical implementation of a 3D crossover switching network, IEEE Photon. Tech. Lett. 2, 438–440 (1990).CrossRefGoogle Scholar
  4. 4.
    M. E. Prise, N. C. Craft, R. E. LaMarche, M. M. Downs, S. J. Walker, L. A. D’Asaro, and L. M. F. Chirovsky, Module for optical logic circuits using symmetric self electrooptic effect devices, App. Opt. 29, 2164–2170 (1990).CrossRefGoogle Scholar
  5. 5.
    B. S. Wherrett, R. G. A. Craig, J. F. Snowdon, G. S. Buller, F. A. P. Tooley, S. Bowman, G. S. Pauley, I. R. Redmond, D. McKnight, M. R. Tagizadeh, A. C. Walker, and S. D. Smith, Construction and tolerancing of an optical CLIP, in: Digital Optical Computing II (Raymond Arrathoon, ed.), Proc. SPIE 1215, 1990, pp. 264–273.CrossRefGoogle Scholar
  6. 6.
    D. C. O’Shea, Elements of Modern Optical Design (Wiley, New York, 1985), pp. 230–231.Google Scholar
  7. 7.
    K. Iga, M. Oikawa, S. Misawa, J. Banno, and Y. Kokubun, Stacked planar optics: an application of the planar microlens, Appl. Opt. 21, 3456–3460 (1982).CrossRefGoogle Scholar
  8. 8.
    M. R. Feldman and C. C. Guest, Computer generated holographic optical elements for optical interconnection of very large scale integrated circuits, Appl. Opt. 26, 4377–4384, (1987).CrossRefGoogle Scholar
  9. 9.
    M. W. Haney and J. J. Levy, Optically cascadable folded perfect shuffle, in: OSA Annual Meeting, 1989, Technical Digest Series, Vol. 18, Optical Society of America, Washington DC.Google Scholar
  10. 10.
    K. Noguchi, K. Hogari, T. Sakano, and T. Matsumoto, A rearrangeable multichannel free-space optical switch using polarization-multiplexing technique, in: Photonic Switching II, Proceedings of the international topical meeting (K. Tada and H. S. Hinton, eds.) (Springer-Verlag, Berlin, 1990), pp. 208–211.CrossRefGoogle Scholar
  11. 11.
    K. Hogari, K. Noguchi, T. Sakano, and T. Matsumoto, Two-dimensional optical switch employing polarization control techniques, in: Photonic Switching II, Proceedings of the international topical meeting (K. Tada and H. S. Hinton, eds.) (Springer-Verlag, Berlin, 1990), pp. 204–207.CrossRefGoogle Scholar
  12. 12.
    S. Kawai, Free-space multi-stage optical interconnection networks using microlens arrays, in: Photonic Switching II, Proceedings of the international topical meeting (K. Tada and H. S. Hinton, eds.) (Springer-Verlag, Berlin, 1990), pp. 216–219.CrossRefGoogle Scholar
  13. 13.
    E. J. Restall, B. Robertson, M. R. Taghizadeh, and A. C. Walker, Two-dimensional spatially variant optical interconnects, in: Optical Computing 1991, Technical Digest Series, Vol. 6, pp. 49–52, Optical Society of America, Washington, D.C.Google Scholar
  14. 14.
    J. Schwider, W. Stork, N. Streibl, and R. Volkel, Possibilities and limitations of space-variant holographic optical elements for switching networks and general interconnects, Optics in Complex Systems, Proc. SPIE 1319, 1990, pp. 130–131.Google Scholar
  15. 15.
    F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. M. Sasian, and H. S. Hinton, Microbeam interconnections using microlens arrays for free space photonic systems, in: OSA Proceedings on Photonic Switching (H. S. Hinton and J. W. Goodman, eds.), Vol. 8, pp. 90–96, Optical Society of America, Washington, D.C. (1991).Google Scholar
  16. 16.
    E. Hecht and A. Zajac, Optics (Addison-Wesley, Reading, Mass., 1974).Google Scholar
  17. 17.
    W. T. Welford, Aberrations of Optical Systems (Adam Hilger, Bristol, UK, 1986).Google Scholar
  18. 18.
    F. B. McCormick, F. A. P. Tooley, J. L. Brubaker, J.M. Sasian, T. J. Cloonan, A. L. Lentine, S. J. Hinterlong, and M. J. Herron, Optomechanics of a free-space switch: the system, in: Optomechanics and dimensional stability, Proc. SPIE 1533, 1991, pp. 97–114.CrossRefGoogle Scholar
  19. 19.
    W. J. Smith, Modern Optical Engineering (McGraw-Hill, New York, 1966), pp. 82–84.Google Scholar
  20. 20.
    W. J. Smith, Image formation: geometrical and physical optics, in: Handbook of Optics (W. G. Driscoll and W. Vaughan, eds.) (McGraw-Hill, New York, 1978), pp. 2–19.Google Scholar
  21. 21.
    M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, Oxford, UK, 1980), pp. 395–397.Google Scholar
  22. 22.
    S. J. Wein and W. L. Wolfe, Gaussian-apodized apertures and small-angle scatter measurement, Opt. Eng. 28, 2730–280 (1989).CrossRefGoogle Scholar
  23. 23.
    P. Belland and J. P. Crenn, Changes in the characteristics of a Gaussian beam weakly diffracted by a circular aperture, Appl. Opt. 21, 522–527 (1982).CrossRefGoogle Scholar
  24. 24.
    M. Griot, Laser Scan Lens Guide, copyright Melles Griot, 1987.Google Scholar
  25. 25.
    V. N. Majahan, Strehl Ratio for primary aberrations: some analytical results for circular and annular pupils, J. Opt. Soc. Am. 72, 1258–1266 (1982).CrossRefGoogle Scholar
  26. 26.
    J. M. Bennett and H. E. Bennett, Polarization, in: Handbook of Optics (W. G. Driscoll and W. Vaughan, eds.) (McGraw-Hill, New York, 1978).Google Scholar
  27. 27.
    D. S. Kliger, J. W. Lewis, and C. E. Randall, Polarized Light in Optics and Spectroscopy (Academic, San Diego, 1990).Google Scholar
  28. 28.
    R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (Elsevier Science, Amsterdam, 1977).Google Scholar
  29. 29.
    R. C. Enger and S. K. Case, Optical elements with ultrahigh spatial-frequency surface corrugations, Appl. Opt. 22, 3220–3228 (1983).CrossRefGoogle Scholar
  30. 30.
    K. M. Johnson, D. A. Jared, T. Slagle, K. Wagner, C. Mao, and M. G. Robinson, Ferroelectric Liquid Crystal Spatial Light Modulators and their Applications, in: Technical Digest on Spatial Light Modulators and Applications, 1990, Vol. 14, pp. 90–92, Optical Society of America, Washington, D.C.Google Scholar
  31. 31.
    W. E. Ross, D. Psaltis, and R. H. Anderson, Two-dimensional magneto-optic spatial light modulator for signal processing, Opt. Eng. 22, 485–490 (1983).CrossRefGoogle Scholar
  32. 32.
    P. Matthijesse, Multiple imaging with thin phase filters: a signal processing approach, J. Opt. Soc. Am. 68, 733–739 (1978).CrossRefGoogle Scholar
  33. 33.
    H. K. Liu and J. G. Duthie, Real-time screen-aided multiple-image optical holographic matched-filter correlator, Appl. Opt. 21, 3278–3286 (1982).CrossRefGoogle Scholar
  34. 34.
    B. Hill, Appl. Opt. 14, 2607 (1975).CrossRefGoogle Scholar
  35. 35.
    N. Streibl, Beam shaping with optical array generators, J. Mod. Opt. 36, 1559–1573 (1989)CrossRefGoogle Scholar
  36. 35a.
    J. N. Mait, Review of multi-phase Fourier grating design for array generation, Computer and Optically formed Holographic Optics, Proc. SPIE 1211, 1990, pp. 67–68.CrossRefGoogle Scholar
  37. 36.
    M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon Press, Oxford, UK, 1980), p. 482.Google Scholar
  38. 37.
    M. Born and E. Wolf, in Principles of Optics, Ref. 36, p. 187.Google Scholar
  39. 38.
    S. D. Smith, A. C. Walker, M. R. Taghizadeh, I. R. Redmond, and B. Robertson, The optical wiring of photonic digital processing arrays for optical computing, Optical Computing, Proc. SPIE 963, 1988, pp. 414–418.Google Scholar
  40. 39.
    A. W. Lohmann, J. Schwider, N. Streibl, and J. Thomas, Array illuminator based on phase contrast, Appl. Opt. 27, 2915–2921 (1988).CrossRefGoogle Scholar
  41. 40.
    M. Born and E. Wolf, in Principles of Optics, Ref. 36, p. 424.Google Scholar
  42. 41.
    T. Kubota and M. Takeda, Array illuminator using grating couplers, Opt. Lett. 14, 651–652 (1989).CrossRefGoogle Scholar
  43. 42.
    J. T. Winthrop and C. R. Worthington, Theory of Fresnel images, J. Opt. Soc. Am. 55, 373 (1965).CrossRefGoogle Scholar
  44. 43.
    A. W. Lohmann, An array illuminator based on the Talbot-effect, Optik 79, 41–45 (1988).Google Scholar
  45. 44.
    J. Jahns, M. M. Downs, M. E. Prise, N. Streibl, and S. J. Walker, Dammann gratings for laser beam shaping, Opt. Eng. 28, 1267–1275 (1989).CrossRefGoogle Scholar
  46. 45.
    H. Dammann and K. Gortler, High-efficiency in-line multiple imaging by means of multiple phase holograms, Opt. Commun. 3, 312–315 (1971).CrossRefGoogle Scholar
  47. 46.
    H. Dammann and E. Klotz, Coherent optical generation and inspection of two-dimensional periodic structures, Opt. Acta 24, 505–515 (1977).CrossRefGoogle Scholar
  48. 47.
    U. Killat, G. Rabe, and W. Rave, Binary phase gratings for star couplers with high splitting ratio, Fiber Int. Opt. 4, 159–167 (1982).CrossRefGoogle Scholar
  49. 48.
    M. R. Taghizadeh, J. Turunen, B. Robertson, A. Vasara, and J. Westerholm, Passive optical array generators, in: Optical Computing 1991, Technical Digest Series, Vol. 6, pp. 148–151, Optical Society of America, Washington, D.C.Google Scholar
  50. 49.
    F. B. McCormick, Generation of large spot arrays from single laser beam by multiple imaging with binary phase gratings, Opt. Eng. 28, 299–304 (1989).CrossRefGoogle Scholar
  51. 50.
    J. Jahns, N. Streibl, and S. J. Walker, Multilevel phase structures for array generation, Proc. SPIE 1052, 1989, pp. 198–203.Google Scholar
  52. 51.
    M. E. Prise, N. Streibl, and M. M. Downs, Optical considerations in the design of a digital computer, Opt. Quantum Electron. 20, 49–77 (1988).CrossRefGoogle Scholar
  53. 52.
    J. W. Goodman, Fan-in and fan-out with optical interconnections, Opt. Acta, 32, 1489–1496 (1985).CrossRefGoogle Scholar
  54. 53.
    M. von Laue, Ann. der Phys. 44, 1197 (1914).Google Scholar
  55. 54.
    D. Gabor, Prog. Opt. I, 155 (1961).Google Scholar
  56. 55.
    A. W. Lohmann, The space-bandwidth product, applied to spatial filtering and to holography (lecture notes, University of Michigan summer school on “Optical Data Processing”) (1966).Google Scholar
  57. 56.
    I. J. Cox and J. R. Sheppard, Information capacity and resolution in an optical system, J. Opt. Soc. Am. 3, 1152 (1986).CrossRefGoogle Scholar
  58. 57.
    W. Lukosz, Optical systems with resolving powers exceeding the classical limit, J. Opt. Soc. Am. 56, 1463(1966).CrossRefGoogle Scholar
  59. 58.
    M. A. Grimm and A. W. Lohmann, Superresolution for one-dimensional objects, J. Opt. Soc. Am. 56, 1151 (1966).CrossRefGoogle Scholar
  60. 59.
    M. E. Prise, N. Streibl, and M. M. Downs, Computational properties of nonlinear optical devices, Photonic Switching, Proceedings of the First Topical Meeting (T. K. Gustafson and P. W. Smith, eds.) (Springer-Verlag, 1987), pp. 200–203.Google Scholar
  61. 60.
    P. Wheatley and J. E. Midwinter, Operating curves for optical bistable devices, Photonic Switching, Proceedings of the First Topical Meeting (T. K. Gustafson and P. W. Smith, eds.) (Springer-Verlag, 1987), pp. 80–83.Google Scholar
  62. 61.
    A. L. Lentine, L. M. F. Chirovsky, L. A. D’Asaro, C. W. Tu and D. A. B. Miller, Energy scaling and subnanosecond switching of symmetric self electrooptic effect devices, IEEE Photon. Tech. Lett. 1, 129–131 (1989).CrossRefGoogle Scholar
  63. 62.
    J. L. Jewell, A. Scherer, S. L. McCall, A. C. Gossard, and J. H. English, GaAs-AlAs monolithic micro resonator arrays, Appl. Phys. Lett. 51, 94 (1987).CrossRefGoogle Scholar
  64. 63.
    P. S. Cross, G. L. Harnagel, W. Streifer, D. R. Scifres, and D. F. Welch, Ultrahigh-power semiconductor diodes laser arrays, Science 237, 1305 (1987).CrossRefGoogle Scholar
  65. 64.
    A. L. Lentine, F. B. McCormick, R. A. Novotny, L. M. F. Chirovsky, L. A. D’Asaro, R. F. Kopf, J. M. Kuo, and G. D. Boyd, A 2 kbit array of symmetric self electro-optic effect devices, IEEE Photon. Techn. Lett. 2, 51–53 (1990).CrossRefGoogle Scholar
  66. 65.
    J. L. Jewell, Y. H. Lee, A. Scherer, S. L. McCall, N. A. Olsson, R. S. Tucker, C. A. Burrus, J. P. Harbison, L. T. Florez, A. C. Gossard, and J. H. English, Nonlinear FP etalons and microlaser devices, in: Digital Optical Computing (R. A. Athale, ed.), SPIE Critical Review Series CR35, 44–67 (1990).Google Scholar
  67. 66.
    D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, Novel hybrid optical bistable switch: the quantum well self electro-optic effect device, Appl. Phys. Lett. 45, 13–15 (1984).CrossRefGoogle Scholar
  68. 67.
    A. C. Walker, Reflection bistable etalon with absorbed transmission, Optics Communications 59, 145 (1986).CrossRefGoogle Scholar
  69. 67a.
    A. C. Walker, Application of bistable optical logic gate arrays to all-optical digital parallel processing, Appl. Opt. 25, 1578–1585 (1986).CrossRefGoogle Scholar
  70. 68.
    M. E. Prise, M. M. Downs, F. B. McCormick, S. J. Walker, and N. Streibl, Design of an optical digital computer, J. Phys. 49, 15–18, March 1988.Google Scholar
  71. 69.
    F. B. McCormick, A. L. Lentine, L. M. F. Chirovsky, and L. A. D’Asaro, An all-optical shift register using symmetric self electro-optic effect devices, OSA Proceedings on Photonic Switching (J. E. Midwinter and H. S. Hinton, eds.), Vol. 3, pp. 192–195, Optical Society of America, Washington, D.C. (1989).Google Scholar
  72. 70.
    J. Turunen, A. Vasara, H. Ichikawa, E. Noponen, J. Westerholm, M. R. Tagizadeh, and J. M. Miller, Storage of multiple images in a thin synthetic Fourier hologram, Optics Communications 84, 383–392 (1991).CrossRefGoogle Scholar
  73. 71.
    J. E. Ford, S. H. Lee, and Y. Fainman, Application of photrefractive crystals to optical interconnection, Digital Optical Computing II (Raymond Arrathoon, ed.), Proc. SPIE 1215, 1990, pp. 155–165.CrossRefGoogle Scholar
  74. 72.
    D. Psaltis, D. Brady, and K. Wagner, Adaptive optical networks using photrefractive crystals, Appl. Opt. 27, 1752–1759 (1988).CrossRefGoogle Scholar
  75. 72a.
    K-H. Brenner and A. Huang, Optical implementations of the perfect shuffle interconnection, Appl. Opt. 27, 135(1988).CrossRefGoogle Scholar
  76. 73.
    A. W. Lohmann, W. Stork, and G. Stucke, Optical perfect shuffle, Appl. Opt. 25, 1530 (1986).CrossRefGoogle Scholar
  77. 74.
    G. Eichmann and Y. Li, Compact optical generalized perfect shuffle, Appl. Opt. 26, 1167 (1987).CrossRefGoogle Scholar
  78. 75.
    C. W. Stirk, R. A. Athale, and M. W. Haney, Folded perfect shuffle optical processor, Appl. Opt. 27, 202 (1988).CrossRefGoogle Scholar
  79. 76.
    Y. Sheng, Light effective 2-D optical perfect shuffle using Fresnel mirrors, Appl. Opt. 28, 3290–3292 (1989).CrossRefGoogle Scholar
  80. 77.
    Y. Sheng, Corner-cube retroreflectors for optical chip-to-chip interconnections, Opt. Lett. 15, 755 757 (1990).Google Scholar
  81. 78.
    A. C. Walker, R. G. A. Craig, D. J. McKnight, I. R. Redmond, J. F. Snowdon, G. S. Buller, E. J. Restall, R. A. Wilson, S. Wakelin, N. McArdle, P. Meredith, J. M. Miller, G. MacKinnon, M. R. Taghizadeh, S. D. Smith, and B. S. Wherrett, Design and construction of a programmable optical 16 × 16 array processor, in Optical Computing 1991, Technical Digest Series, Vol. 6, pp. 199–202, Optical Society of America, Washington, D.C.Google Scholar
  82. 79.
    F. B. McCormick and M. E. Prise, Optical circuitry for free space interconnections, Appl. Opt. 29, 2013–2018 (1990).CrossRefGoogle Scholar
  83. 80.
    A. W. Lohmann, What classical optics can do for the digital optical computer, Appl. Opt. 25, 1543 (1986).CrossRefGoogle Scholar
  84. 81.
    K. M. Johnson, M. R. Surette, and J. Shamir, Optical interconnection network using polarization-based ferroelectric liquid crystal gates, Appl. Opt. 27, 1727–1733 (1988).CrossRefGoogle Scholar
  85. 82.
    J. Jahns, Optical implementation of the Banyan network, Opt. Commun. 76, 321–324 (1990).CrossRefGoogle Scholar
  86. 83.
    J. Jahns and M. J. Murdocca, Crossover networks and their optical implementation, Appl. Opt. 27, 3155–3160 (1988).CrossRefGoogle Scholar
  87. 84.
    F. A. P. Tooley, T. J. Cloonan, and F. B. McCormick, On the use of retroreflector array to implement crossover interconnections between arrays of SEED logic gates, Opt. Eng. 30, 1969–1975 (1991).CrossRefGoogle Scholar
  88. 85.
    J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968).Google Scholar
  89. 86.
    C. D. McGillem and G. R. Cooper, Continuous and Discrete Signal and System Analysis (McGraw-Hill, New York, 1968), p. 365.Google Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • H. Scott Hinton
    • 1
  • J. R. Erickson
  • T. J. Cloonan
  • F. A. P. Tooley
  • F. B. McCormick
  • A. L. Lentine
  1. 1.McGill UniversityMontrealCanada

Personalised recommendations