Factors Limiting Success of Introduced Natural Enemies

  • Robert van den Bosch
  • P. S. Messenger
  • A. P. Gutierrez

Abstract

Since the initial success against the cottony-cushion scale in California, by 1976 approximately 128 species of pest insects and weeds in many parts of the world have been completely or substantially controlled by imported natural enemies (Laing and Hamai, 1976). Despite this gratifying record, most attempts in classical biological control either have met with total failure, or have been only partially successful (Turnbull and Chant, 1961; Turnbull, 1967; Hall and Ehler, 1979). But this is not reason for despair, as the few limited successes have been of immense value, saving countless millions of dollars for growers and consumers, and have helped reduce pesticide use in agriculture. This record of course needs improvement, and only careful agroecosystem analysis of the factors limiting natural-enemy effectiveness will help show us the way.

Keywords

Biological Control Natural Enemy Juglans Regia Classical Biological Control Palearctic Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Campbell, A., B. D. Fraser, N. Gilbert, A. P. Gutierrez, and M. P. Mackauer. 1974. Temperature requirements of some aphids and their parasites. J. App!. Ecol. 11: 431–438.CrossRefGoogle Scholar
  2. Clausen, C. P. 1956. Biological control of insect pests in the continental United States. U.S. Dept. Agric. Tech. Bull. 1139. 151 pp.Google Scholar
  3. Clausen, C.P. 1958. Biological control of insect pests. Annu. Rev. Entomol. 3: 291–310.CrossRefGoogle Scholar
  4. DeBach, P. 1965. Some biological and ecological phenomena associated with colonizing entomophagous insects. In H. G. Baker and G. L. Stebbins (eds.) Genetics of Colonizing Species. Academic Press: New York pp. 287–306.Google Scholar
  5. DeBach, P., T. W. Fisher, and J. Landi. 1955. Some effects of meteorological factors on all stages of Aphytis lignanensis, a parasite of the California red scale. Ecology 36: 743–753.CrossRefGoogle Scholar
  6. Flanders, S. E. 1937. Ovipositional instincts and developmental sex differences in the genus Coccophagous. Univ. Calif. Publ. Entomol. 6 (95): 401–432.Google Scholar
  7. Flint, M. L. 1981. Climatic ecotypes of Trioxys complanatus, a parasite’of the spotted alfalfa aphid. Environ. Entomol. 9: 501–507.Google Scholar
  8. Gilbert, N.E. and A. P. Gutierrez. 1973. An aphid-parasite plant relationship. J. Anim. Ecol. 42: 323–340.CrossRefGoogle Scholar
  9. Gutierrez, A. P., and U. Regev. 1980. The economic fitness and adaptations in sylvan and agricultural systems: theoretical and practical applications. Proc. X VI Int. Cong. Entomol. Kyoto, Japan.Google Scholar
  10. Hall, R.M. and L. E. Ehler, 1979. Rate of establishment of natural enemies in classical biological control. Bull. Entomol. Soc. Am. 25: 280–282.Google Scholar
  11. Huffaker, C. B., and C. E. Kennett. 1962. Biological control of the olive scale, Parlatoria oleae (Colvee), in California by imported Aphytis maculicornis (Masi) (Hymenoptera: Aphelinidae). Hilgardia 32: 541–636.Google Scholar
  12. Laing, J. E., and J. Hamai. 1976. Biological control of insect pests and weeds by imported parasites, predators, and pathogens. In: C. B. Huffaker and P. S. Messenger (eds.) Theory and Practice of Biological Control. Academic Press: New York. pp 685–693.Google Scholar
  13. Landis, B. J., and N. F. Howard. 1940. Paradexoides epilachnae, a tachinid parasite of the Mexican bean beetle. U.S. Dept. Agric. Tech. Bull. 721. 31 pp.Google Scholar
  14. Messenger, P. S., and R. van den Bosch. 1971. The adaptability of introduced biological control agents. In: C. F. Huffaker (ed.) Biological Control. Plenum Press: New York. pp. 68–92. Michelbacher, A. E. 1943. The present status of the alfalfa-weevil population in lowland middle California. Calif. Agric. Exp. Sta. Bull. 677. 24 pp.Google Scholar
  15. Salt, G., and R. van den Bosch. 1966. The defense reactions of three species of Hypera (Coleoptera, Curculionidae) to an ichneuman wasp. J. Invertebr. Pathol. 9: 164–177.CrossRefGoogle Scholar
  16. Turnbull, A. L. 1967. Population dynamics of exotic insects. Bull. Entomol. Soc. Am. 13: 333–337.Google Scholar
  17. Turnbull, A. L.,and D. A. Chant. 1961. The practice and theory of biological control of insects in Canada. Can. J. Zool. 39: 697–753.CrossRefGoogle Scholar
  18. Thrnock, W. S., and J. A. Muldew. 1971. Pristiphora erichsonii (Htg.), larch sawfly. In: Bilogical Control Programs against Insects and Weeds in Canada. 1959–1968. Commonw. Inst. Biol. Contr. Tech. Commun. 4: 113–127.Google Scholar
  19. Thrnock, W. J., K. L. Taylor, D. Schroder, and D. L. Dahlsten. 1976. Biological control of pests of coniferous forests. In: C. B. Huffaker and P. S. Messenger (eds.) Theory and Practice of Biological Control. Academic Press: New York. p. 289–311.Google Scholar
  20. van den Bosch, R., 1968. Comments on population dynamics of exotic insects. Bull Entomol, Soc. Am. 14: 112–115.Google Scholar
  21. van den Bosch, R., E. I. Schlinger, J. C. Hall, and B. Puttler. 1964. Studies on succession, distribution and phenology of imported parasites of Therioaphis trifolii (Monell) in Southern California. Ecology 45 :602-621.Google Scholar
  22. van den Bosch, R., B. D. Frazer, C. S. Davis, P. S. Messenger, and.iRi Horn 1970. Trioxys pallidus. An effective new walnut aphid parasite from Iran. Calif. Agric. 24: 8–10.Google Scholar
  23. van den Bosch, R., R. Hom, P. Matteson, B. D. Frazer, P. S. Messenger, and C. S. Davis. 1979. Biological control of the walnut aphid in California: Impact of the parasite Trioxys pallidus. Hilgardia 47: 1–13.Google Scholar

Copyright information

© Springer Science+Business Media New York 1982

Authors and Affiliations

  • Robert van den Bosch
    • 1
  • P. S. Messenger
    • 1
  • A. P. Gutierrez
    • 1
  1. 1.Division of Biological ControlUniversity of California, BerkeleyAlbanyUSA

Personalised recommendations