Buoyancy and Hydrodynamics in Ammonoids

  • David K. Jacobs
  • John A. ChamberlainJr.
Part of the Topics in Geobiology book series (TGBI, volume 13)

Abstract

Information pertaining to the function of ammonoid shells is generated by analogy to living cephalopods, by measurement or experiment designed to elucidate the properties of the ammonoid shell in life situations, and by examination of the distribution and sedimentary environments in which ammonoid fossils are preserved. Virtually all discussions of ammonoid shell function implicitly or explicitly incorporate more than one of these approaches. The combination of analogy with empirical work in the field and laboratory makes the reconstruction of the function of ammonoid shells and interpretation of ammonoid life habits and mode of life particularly intriguing. These interpretations have led to many lively debates among paleobiologists. In this chapter, we examine ammonoid buoyancy and locomotion. We evaluate arguments that have been used to reconstruct the buoyancy and locomotor properties of these extinct cephalopods, discuss recent advances in the understanding of ammonoid locomotion, and suggest directions in which the study of these aspects of ammonoid paleobiology may proceed in the future. Other chapters of this book explore aspects of the structural issues pertaining to the implosion strength of ammonoid shells (Hewitt, Chapter 10, this volume) as well as the environmental information that can be brought to bear on the subject (Westermann, Chapter 16, this volume).

Keywords

Swimming Velocity Shell Shape Muscle Scar Neutral Buoyancy Body Chamber 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ackerly, S. C., 1989, Kinematics of accretionary shell growth, with examples from brachiopods and molluscs, Paleobiology 15: 157–164.Google Scholar
  2. Bandel, K., 1986, The ammonitella: A model of formation with the aid of the embryonic shell of archaeogastropods, Lethaia 19: 171–180.CrossRefGoogle Scholar
  3. Bandel, K., and Boletzky, S. v., 1979, A comparative study of the structure, development, and morphologic relationships of chambered cephalopod shells, Veliger 21: 313–354.Google Scholar
  4. Batt, R. J., 1989, Ammonite shell morphospace distribution in the Western Interior Greenhorn Sea and some paleoecological implications, Palaios 4: 32–43.CrossRefGoogle Scholar
  5. Bayer, U., and McGhee, G. R., Jr., 1984, Iterative evolution of Middle Jurassic ammonite faunas, Lethaia 17: 1–16.CrossRefGoogle Scholar
  6. Berthold, T., and Engeser, T., 1987, Phylogenetic analysis and systematization of the Cephalopoda, Verh. Naturwiss. Ver. Hamb. N.E 29: 187–220.Google Scholar
  7. Bone, Q., Pulsford, A., and Chubb, A. D., 1981, Squid mantle muscle, J. Mar. Biol. Assoc. U.K. 61: 327–342.CrossRefGoogle Scholar
  8. Brett, J. R., 1965, The relation of size to rate of oxygen consumption and sustained swimming speed of sockeye salmon (Oncorhynchus nerka), J. Fish Res. Board Can. 22: 1491–1501.CrossRefGoogle Scholar
  9. Bruun, A. F.. 1943, The biology of Spirula spirula (L.), Dana Rep. 4: 1–46.Google Scholar
  10. Bruun, A. E, 1950, New light on the biology of Spirula, a mesopelagic cephalopod, in: Essay on the Natural Sciences in Honor of Captain Allan Hancock, University of Southern California Press, Los Angeles, pp. 61–72.Google Scholar
  11. Buckland, W., 1836, Geology and Mineralogy Considered with Reference to Natural Theology, Vol. 1, William Pickering, London.Google Scholar
  12. Chamberlain, J. A., Jr., 1976, Flow patterns and drag coefficients of cephalopod shells, Palaeontology (Lond.) 19: 539–563.Google Scholar
  13. Chamberlain, J. A., Jr., 1980, The role of body extension in cephalopod locomotion, Palaeontology (Lond.) 23: 445–461.Google Scholar
  14. Chamberlain, J. A., Jr., 1981, Hydromechanical design of fossil cephalopods, in: The Ammonoidea, Systematics Association Special Volume 18 ( M. R. House and J. R, Senior, eds.), Academic Press. London, pp. 289–336.Google Scholar
  15. Chamberlain, J. A., Jr., 1987, Locomotion of Nautilus, in: Nautilus—The Biology and Paleobiology of a Living Fossil ( W. B. Saunders and N. H. Landman, eds.), Plenum Press, New York, pp. 489–525.Google Scholar
  16. Chamberlain, J. A., Jr., 1990, Jet propulsion of Nautilus: A surviving example of early Paleozoic locomotor design, Can. J. Zool. 68: 806–814.CrossRefGoogle Scholar
  17. Chamberlain, J. A., Jr., 1992, Cephalopod locomotor design and evolution: The constraints of jet propulsion, in: Biomechanics and Evolution ( J. M. V. Rayner and R. J. Wootton, eds.), Cambridge University Press, Cambridge, pp. 57–98.Google Scholar
  18. Chamberlain, J. A., Jr., and Westermann, G. E. G., 1976, Hydrodynamic properties of cephalopod shell ornament, Paleobiology 2: 316–331.Google Scholar
  19. Crick, G. S., 1898, On the muscular attachment of the animal to the shell in some fossil Cephalopoda (Ammonoidea), Trans. Linn. Soc. N.Y. 7: 71–113.CrossRefGoogle Scholar
  20. Dadswell, M. J., and Weihs, D., 1990, Size related hydrodynamic characteristics of the giant scallop, Placopecten magellanicus (Bivalvia: Pectinidae), Can. J. Zool. 68: 778–785.CrossRefGoogle Scholar
  21. Daniel, T. L., 1984, The unsteady aspects of locomotion, Am. Zool. 24: 121–134.Google Scholar
  22. Daniel, T. L., 1985, Cost of locomotion: Unsteady medusan swimming, J. Exp. Biol. 119: 149–164.Google Scholar
  23. DeMont, M. E., and Gosline, J. M., 1988, Mechanics of jet propulsion in the hydromedusan jellyfish, Polyorchis penicillatus. II. Energetics of the jet cycle, J. Exp. Biol. 134: 333–345.Google Scholar
  24. Denton, E. J., and Gilpin-Brown, J. B., 1961a, The buoyancy of the cuttlefish Sepia officinalis (L.), J. Mar. Biol. Assoc. U.K. 41: 319–342.CrossRefGoogle Scholar
  25. Denton, E. J., and Gilpin-Brown, J. B., 1961b, The distribution of gas and liquid within the cuttlebone, J. Mar. Biol. Assoc. U.K. 41: 365–381.CrossRefGoogle Scholar
  26. Denton, E. J., and Gilpin-Brown, J. B., 1961c, The effect of light on the buoyancy of the cuttlefish, J. Mar. Biol. Assoc. U.K. 41: 343–350.CrossRefGoogle Scholar
  27. Denton, E. J., and Gilpin-Brown, J. B., 1966, On the buoyancy of pearly Nautilus, J. Mar. Biol. Assoc. U.K. 46: 365–381.Google Scholar
  28. Denton, E. J., and Gilpin-Brown, J. B., 1973, Floatation mechanisms in modern and fossil cephalopods, Adv. Mar. Biol. 11: 197–268.CrossRefGoogle Scholar
  29. Denton, E. J., Gilpin-Brown, J. B., and Howarth, J. V., 1961, The osmotic mechanism of the cuttlebone, J. Mar. Biol. Assoc. U.K. 41: 351–364.CrossRefGoogle Scholar
  30. Denton, E. J., Gilpin-Brown, J. B., and Howarth, J. V., 1967. On the buoyancy of Spirula spirula. J. Mar. Biol. Assoc. U.K. 47: 181–191.CrossRefGoogle Scholar
  31. Derham, W., 1726, Philosophical Experiments and Observations of the late Eminent Dr. Robert Hooke, Derham, London.Google Scholar
  32. Diamond, J. M., and Bossert, W. H., 1967, Standing-gradient osmotic flow—A mechanism for coupling water and solute transport in epithelia, J. Gen. Physiol. 50: 2061–2083.PubMedCrossRefGoogle Scholar
  33. Doguzhaeva, L., and Mutvei, H., 1989, Ptychoceras—A heteromorph lytoceratid with truncated shell and modified ultrastructure (Mollusca: Ammonoidea), Palaeontogr. Abt. A 208: 91–121.Google Scholar
  34. Doguzhaeva, L., and Mutvei, H., 1991, Organization of the soft body in Aconeceras (Ammonitina), interpreted on the basis of shell morphology and muscle scars, Palaeontogr. Abt. A 218: 17–33.Google Scholar
  35. Ebel, K., 1983, Berechnungen zur Schwebefahigkeit von Ammoniten, N. Jb. Geol. Paläont. Mh. 1983: 614–640.Google Scholar
  36. Ebel, K., 1090, Swimming abilities of ammonites and limitations, Paläonto]. Z. 64: 25–37.Google Scholar
  37. Ebel, K., 1992, Mode of life and soft body shape of heteromorph ammonites, Lethaia 25: 179–194.CrossRefGoogle Scholar
  38. Gray, J. E., 1845, On the animal of Spirula, Ann. Nat. Hist. 15: 257–261.Google Scholar
  39. Greenwald, K. P., Cook, C. B., and Ward, P., 1982, The structure of the chambered Nautilus siphuncle: The siphuncular epithelium, J. Morphol. 172: 5–22.CrossRefGoogle Scholar
  40. House, M. R., 1981, On the origin, classification and evolution of the early Ammonoidea, in: The Ammonoidea, Systematics Association Special Volume 18 ( M. R. House and J. R. Senior, eds.), Academic Press, London, pp. 3–36.Google Scholar
  41. Jacobs, D. K., 1992a, The support of hydrostatic load in cephalopod shells—adaptive and ontogenetic explanations of shell form and evolution from Hooke 1695 to the present, in: Evolutionary Biology, Vol. 26 ( M. K. Hecht, B. Wallace, and R. J. Maclntyre, eds.), Plenum Press, New York, pp. 287–349.CrossRefGoogle Scholar
  42. Jacobs, D. K., 1992b, Shape, drag, and power in ammonoid swimming, Paleobiology 18: 203–220.Google Scholar
  43. Jacobs, D. K., and Landman, N. H., 1993, Is Nautilus a good model for the function and behavior of ammonoids? Lethaia 26: 101–110.CrossRefGoogle Scholar
  44. Jacobs, D. K, Landman, N. H., and Chamberlain, J. A., Jr., 1994, Ammonite shell shape covaries with facies and hydrodynamics: Iterative evolution as a response to changes in basinal environment, Geology 22: 905–908.CrossRefGoogle Scholar
  45. Johansen, W., Soden, P. D., and Trueman, E. R., 1972, A study in jet propulsion: An analysis of the motion of the squid, Loligo vulgaris, J. Exp. Biol. 56: 155–156.Google Scholar
  46. Jordan, R., 1968, Zur Anatomie mesozoischer Ammoniten nach den Strukturelementen der Gehäuse-innenwand, Geol. Jahrb. Beih. 77: 1–64.Google Scholar
  47. Kummel, B., and Lloyd, R. M., 1955, Experiments on the relative streamlining of coiled cephalopod shells, J. Paleontol. 29: 159–170.Google Scholar
  48. Landman, N. H., 1988, Early ontogeny of Mesozoic ammonites and nautilids, in: Cephalopods—Present and Past ( J. Wiedmann and J. Kullmann, eds.), Schweizerbart’sche Verlagsbuchhandlung, Stuttgart, pp. 215–228.Google Scholar
  49. Landman, N. H., and Waage, K. M., 1993, Scaphitid ammonites of the Upper Creatceous (Maastrichtian) Fox Hills Formation in South Dakota and Wyoming, Bull. Am. Mus. Nat. Hist. 215: 1–257.Google Scholar
  50. Landman, N. H., Rye, D. M., and Shelton, K. L., 1983, Early ontogeny of Eutrephoceras compared to recent Nautilus and Mesozoic ammonites: Evidence from shell morphology and light stable isotopes, Paleobiology 9: 269–279.Google Scholar
  51. Lehmann, U., 1967, Ammoniten mit Kieferapparat und Radula aus Lias-Geschieben, Paldontol. Z. 41: 38–45.Google Scholar
  52. Lindsedt, S. L., Hokanson, J. E, Wells, D. J., Swain, S. D., Hopper, H., and Navarro, V., 1992, Running energetics in pronghorn antelope, Nature 353: 748–750.CrossRefGoogle Scholar
  53. Madin, L. P., 1990, Aspects of jet propulsion in salps, Can. J. Zool. 68: 765–777.CrossRefGoogle Scholar
  54. Massare, J. A., 1988, Swimming capabilities of Mesozoic marine reptiles: Implications for method of predation, Paleobiology 14: 187–205.Google Scholar
  55. McGhee, G. C., Bayer, U., and Seilacher, A., 1991, Biological and evolutionary responses to transgressive-regressive cycles, in: Cycles and Events in Stratigraphy ( G. Einsele, W. Ricken, and A. Seilacher, eds.), Springer-Verlag, Berlin, pp. 696–708.Google Scholar
  56. Moseley, H., 1838, On the geometrical form of turbinated and discoid shells, Phil. Trans. R. Soc. Lond. 128: 351–370.CrossRefGoogle Scholar
  57. Mutvei, H., 1975, The mode of life in ammonoids, Paldontol. Z. 49: 196–206.Google Scholar
  58. Mutvei, H., 1983, Flexible nacre in the nautiloid Isorthoceras, with remarks on the evolution of cephalopod nacre. Lethaia 16: 223–240.CrossRefGoogle Scholar
  59. Mutvei, H., and Reyment, R. A., 1973, Buoyancy control and siphuncle function in ammonoids, Palaeontology (Lond.) 16: 623–636.Google Scholar
  60. O’Dor, R. K., 1982, Respiratory metabolism and swimming performance of the squid, Loligo opalescens, Can. J. Fish. Aquat. Sci. 39: 580–587.CrossRefGoogle Scholar
  61. O’Dor, R. K., 1988a, The energetic limits on squid distributions, Malacologia 29: 113–119.Google Scholar
  62. O’Dor, R. K., 1988b, The forces acting on swimming squid, J. Exp. Biol. 137: 421–442.Google Scholar
  63. O’Dor, R. K., and Webber, D. M., 1991, Invertebrate athletes: Trade-offs between transport efficiency and power density in cephalopod evolution, J. Exp. Biol. 160: 93–112.Google Scholar
  64. O’Dor, R. K., and Wells, M. J., 1990, Performance limits of “antique” and “state-of-the-art” cephalopods, Nautilus and squid, Am. Malacol. Union Prog. Abstr. 56th Ann. Meeting, p. 52.Google Scholar
  65. O’Dor, R. K., Wells, M. J., and Wells, J., 1990, Speed jet pressure and oxygen consumption relationships in free-swimming Nautilus, J. Exp. Biol. 154: 383–396.Google Scholar
  66. O’Dor, R. K., Forsythe, J., Webber, D. M.. Wells, J., and Wells, M. J., 1993, Activity levels of Nautilus in the wild, Nature 362: 626–627.CrossRefGoogle Scholar
  67. Okamoto, T., 1988, Analysis of heteromorph ammonoids by differential geometry, Palaeontology (Land.) 31: 35–52.Google Scholar
  68. Owen, R., 1832, Memoir on the Pearly Nautilus, Royal College of Surgeons, London.Google Scholar
  69. Owen, R., 1878, On the relative positions to their construction of the chambered shells of cephalopods, Proc. Zool. Soc. Lond. 1878: 955–975.Google Scholar
  70. Pfaff, E., 1911, Über Form und Bau der Ammonitensepten und ihre Beziehungen zur Suturlinie, Jahr. Nieder. Geol. Ver. Hann. 1911: 207–223.Google Scholar
  71. Raup, D. M., 1967, Geometric analysis of shell coiling: Coiling in ammonoids, J. Paleontol. 41: 43–65.Google Scholar
  72. Raup, D. M., and Chamberlain, J., 1967, Equations for volume and center of gravity in ammonoid shells, J. Paleontol. 41: 566–574.Google Scholar
  73. Reyment, R. A., 1973, Factors in the distribution of fossil cephalopods. Part 3: Experiments with exact models of certain shell types, Bull. Geol. Inst. Univ. Uppsala N.S. 4: 7–41.Google Scholar
  74. Saunders, W. B., 1995, The ammonoid suture problem: Relationship between shell and septal thickness and sutural complexity in Paleozoic ammonoids, Paleobiology, 21: 343–355.Google Scholar
  75. Saunders, W. B., and Shapiro, E. A., 1986, Calculation and simulation of ammonoid hydrostatics, Paleobiology 12: 64–79.Google Scholar
  76. Saunders, W. B., and Swan, R. H., 1984, Morphology and morphologic diversity of Mid-Carboniferous (Namurian) ammonoids in time and space, Paleobiology 10: 195–228.Google Scholar
  77. Schmidt, H., 1930, Über die Bewegungsweise der Schalencephalopoden, Paläontol. Z. 12: 194208.Google Scholar
  78. Schmidt-Nielsen, K., 1972, Locomotion: Energy cost of swimming, flying and running, Science 177: 222–228.PubMedCrossRefGoogle Scholar
  79. Shapiro, E. A., and Saunders, W. B., 1987, Nautilus shell hydrostatics, in: Nautilus—The Biology and Paleobiology of a Living Fossil (W. B. Saunders and N. H. Landman, eds.), Plenum Press, New York, pp. 527–545.Google Scholar
  80. Shigeta, Y., 1993, Post-hatching life history of Cretaceous Ammonoidea, Lethaia 26: 133–146.CrossRefGoogle Scholar
  81. Smith, J. P., 1897, The development of Glyphioceras and the phylogeny of the Glyphioceratidae, Proc. Calif. Acad. Sci. 1: 105–128.Google Scholar
  82. Smith, J. P., 1898, The development of Lytoceras and Phylloceras, Proc. Calif. Acad. Sci. 1: 129–152.Google Scholar
  83. Smith, J. P.. 1900, The development and phylogeny of Placenticeras, Proc. Calif. Acad. Sci. 3: 181–232.Google Scholar
  84. Spath, L. F., 1919, Notes on ammonites, Geol. Mag. 56:26–58,65–74,115–122, 170–177. 220–225Google Scholar
  85. Swan, R. T. H., and Saunders, W. B., 1987, Function and shape in Late Paleozoic (Mid-Carboniferous) ammonoids, Paleobiology 13: 297–311.Google Scholar
  86. Tanabe, K., Shigeta, Y., and Mapes, R. H., 1995, Early life history of Carboniferous ammonoids inferred from analysis of shell hydrostatics and fossil assemblages. Palaios, 10: 80–86.CrossRefGoogle Scholar
  87. Thayer, C. W., 1992, Escalating energy budgets and oligotrophic refugia: Winners and drop-outs in the Red Queen’s race, Fifth North American Paleontology Conference Abstracts and Program, Paleontol. Soc. Spec. Pub. 6: 290.Google Scholar
  88. Trueman, A. E., 1941, The ammonite body chamber, with special reference to the buoyancy and mode of life of the living ammonite, Q. J. Geol. Soc. (Lond.) 96: 339–383.Google Scholar
  89. Trueman, E. R., and Packard, A., 1968, Motor performances of some cephalopods, J. Exp. Biol. 49: 495–507.Google Scholar
  90. Van Valen, L., 1973, A new evolutionary law, J. Evol. Theory 1: 1–30.Google Scholar
  91. Vogel, S., 1981, Life in Moving Fluids: The Physical Biology of Flow, Princeton University Press, Princeton, NJ.Google Scholar
  92. Ward, P. D., 1979, Cameral liquid in Nautilus and ammonites, Paleobiology 5: 40–49.Google Scholar
  93. Ward, P. D., 1981, Shell sculpture as a defensive adaptation in ammonoids, Paleobiology 7: 96–100.Google Scholar
  94. Ward, P. D., 1982, The relationship of siphuncle size to emptying rates in chambered cephalopods: Implications for cephalopod paleobiology, Paleobiology 8: 426–433.Google Scholar
  95. Ward, P. D., and Boletzky, S. von, 1984, Shell implosion depth and implosion morphologies in three species of Sepia (Cephalopoda) from the Mediterranean Sea, J. Mar. Biol. Assoc. U.K. 64: 955–966.CrossRefGoogle Scholar
  96. Webber, D. M., and O’Dor, R. K., 1986, Monitoring the metabolic rate and activity of free-swimming squid with telemetered jet pressure, J. Exp. Biol. 126: 205–224.Google Scholar
  97. Weitschat, W., and Bandel, K., 1991, Organic components in phragmocones of Boreal Triassic ammonoids: Implications for ammonoid biology, Paläontol. Z. 65: 269–303.Google Scholar
  98. Wells, M. J., 1987, Ventilation and oxygen extraction by Nautilus, in: Nautilus—The Biology and Paleobiology of a Living Fossil ( W. B. Saunders and N. H. Landman, eds.), Plenum Press, New York, pp. 339–348.Google Scholar
  99. Wells, M. J., and O’Dor, R. K. 1991, Jet propulsion and the evolution of cephalopods, Bull. Mar. Sci. 49: 419–432.Google Scholar
  100. Wells, M. J., and Wells, J., 1985, Ventilation and oxygen uptake by Nautilus, J. Exp. Biol. 118: 297–312.Google Scholar
  101. Westermann, G. E. G., 1956, Phylogenie der Stephanocerataceae und Perisphinctaceae des Dogger, N. Jb. Geol. Paldont. Abh. 103: 233–279.Google Scholar
  102. Westermann, G E G, 1966, Covariation and taxonomy of the Jurassic ammonite Sonninia adicra (Waagen), N. Jb. Geol. Paldont. Abh., 124: 19–312.Google Scholar
  103. Westermann, G. E. G., 1971, Form, structure and function of shell and siphuncle in coiled Mesozoic ammonoids, Life Sci. Contrib. R. Ont. Mus. 78: 1–39.Google Scholar
  104. Yochelson, E. L., Flower, R. H., and Webers, G. F., 1973, The bearing of the new Late Cambrian monoplacophoran genus Knightoconus upon the origin of the Cephalopoda, Lethaia 6: 275310.Google Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • David K. Jacobs
    • 1
  • John A. ChamberlainJr.
    • 2
  1. 1.Department of BiologyUniversity of California at Los AngelesLos AngelesUSA
  2. 2.Department of GeologyBrooklyn College, City University of New YorkBrooklynUSA

Personalised recommendations