Ammonoid Paleobiology pp 543-578 | Cite as
Ammonoid Taphonomy
Chapter
Abstract
Taphonomy deals with the differential decay of organismic shapes, tissues, and skeletons under the influence of biological and physical agents and their fixation in the fossil record. This helps us to understand cases of exceptional preservation, sometimes including soft parts (Konservat-Lagerstätten). On the other hand, it provides a measure of the amount of distortion and time averaging that fossil assemblages and shell beds (Konzentrat-Lagerstätten) have undergone compared to the original biocoenosis. In this sense, taphonomy is a geological discipline and an important tool in facies analysis.
Keywords
Body Chamber Carbonate Concretion Calcareous Concretion Aragonitic Shell Septal Neck
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Preview
Unable to display preview. Download preview PDF.
References
- Allison, P. A., 1988, Phosphatized soft-bodied squids from the Jurassic Oxford Clay, Lethaia 21: 403–410.CrossRefGoogle Scholar
- Allison, P. A., 1990a, Decay processes, in: Palaeobiology—A Synthesis ( D. E. G. Briggs and P. R. Crowther, eds.), Blackwell Science Publications, Oxford, pp. 213–216.Google Scholar
- Allison, P. A., 1990b, Carbonate nodules and plattenkalks, in: Palaeobiology—A Synthesis ( D. E. G. Briggs and P. R. Crowther, eds.), Blackwell Science Publications, Oxford, pp. 250–253.Google Scholar
- Allison, P. A., 1990c, Pyrite, in: Palaeobiology—A Synthesis ( D. E. G. Briggs and P. R. Crowther, eds.), Blackwell Science Publications, Oxford, pp. 253–255.Google Scholar
- Allison, P. A., Smith, C. R., Kukert, H., Deming, J. W., and Bennett, B. A., 1991, Deep-water taphonomy of vertebrate carcasses: A whale skeleton in the bathyal Santa Catalina Basin, Paleobiology 17: 78–89.Google Scholar
- Arthur, M. A., 1979, North Atlantic Cretaceous black shales: The record at Site 398 and a brief comparison with other occurrences, Mit. Rep. DSDP 47: 719–738.Google Scholar
- Bandel, K., 1988, Operculum and buccal mass of ammonites, in: Cephalopods—Present and Past ( J. Wiedmann and J. Kullmann, eds.), Schweizerbart’sche Verlagsbuchhandlung, Stuttgart, pp. 653–678.Google Scholar
- Barthel, K. W., Swinburne, N. H. M., and Conway Morris, S., 1990, Solnhofen: A Study in Mesozoic Palaeontology, Cambridge University Press, Cambridge.Google Scholar
- Behrensmeyer, A. K., and Kidwell, S. M., 1985, Taphonomy’s contributions to paleobiology, Paleobiology 11: 105–119.Google Scholar
- Berner, R. A., 1968, Calcium carbonate concretions formed by the decomposition of organic matter, Science 159: 195–197.PubMedCrossRefGoogle Scholar
- Boston, W. B., and Mapes, R. H., 1991, Ectocochleate cephalopod taphonomy, in: The Process of Fossilization ( S. K. Donovan, ed.), Belhaven Press, London, pp. 220–240.Google Scholar
- Brenner, K., and Seilacher, A., 1978, New aspects about the origin of the Toarcian Posidonia Shales, N. Jb., Geol. Paläont. Abh. 157: 11–18.Google Scholar
- Brett, C. E., and Baird, G. C., 1986, Comparative taphonomy: A key to paleoenvironmental interpretation based on fossil preservation, Palaios 1: 207–227.CrossRefGoogle Scholar
- Cecca, E. 1992. Ammonite habitats in the Early Tithonian of Western Tethys, Lethaia 25: 257–267.CrossRefGoogle Scholar
- Chamberlain, J. A., Jr., and Weaver, J. S., 1978, Equations of motion for post-mortem sinking of cephalopod shells, Math. Geol. 10: 673–689.CrossRefGoogle Scholar
- Chamberlain, J. A., Jr., Ward, P. D., and Weaver, J. S., 1981, Postmortem ascent of Nautilus shells: Implications for cephalopod paleo-biogeography, Paleobiology 7: 494–509.Google Scholar
- Closs, D., 1967, Goniatiten mit Radula und Kiefferapparat in der Itararé-Formation von Uruguay, Paläontol. Z. 41: 19–37.Google Scholar
- Dagys, A. S., and Weitschat, W., 1993, Extensive intraspecific variation in a Triassic ammonoid from Siberia, Lethaia 26: 113–121.CrossRefGoogle Scholar
- Denton, E. J., and Gilpin-Brown, J. B., 1966, On the buoyancy of the pearly nautilus, J. Mar. Biol. Assoc. U.K. 46: 723–759.CrossRefGoogle Scholar
- Donovan, S. K., 1989, Taphonomic significance of the encrustation of the dead shell of Recent Spirula spirula (Linné) (Cephalopoda: Coleoidea) by Lepas anatifem Linné (Cirripedia: Thoracia), J. Paleontol. 63: 698–702.Google Scholar
- Fernandez-Lopez, S., 1984, Criterios elementales de reelaboración taphonómica en ammonites de la Cordillera Ibérica, Acta Geol. Hisp. 19: 105–116.Google Scholar
- Fernandez-Lopez, S., 1991, Taphonomic concepts for a theoretical biochronology, Rev. Esp. Paleont. 6: 37–49.Google Scholar
- Fernandez-Lopez, S., and Meléndez, G., 1994, Abrasion surfaces on internal moulds of ammonites as palaeobathymetric indicators. Palaeogeogr. Palaeoclimatol. Palaeoecol. 110: 29–42.CrossRefGoogle Scholar
- Fürsich, E T., 1990, Fossil concentrations and life and death assemblages, in: Palaeobiology—A Synthesis ( D. E. G. Briggs and P. R. Crowther, eds.), Blackwell Scientific Publications, Oxford, pp. 235–239.Google Scholar
- Gill, J. R., and Cobban, W. A., 1966, The Red Bird section of the Upper Cretaceous Pierre Shale in Wyoming, U. S. Geol. Surv. Prof. Pap. 393-A: 1–75.Google Scholar
- Gómez, J. J., and Fernandez-Lopez, S., 1994, Condensation process in shallow platforms, Sediment. Geol. 92: 147–159.CrossRefGoogle Scholar
- Greenwald, L., and Ward, P. D., 1987, Buoyancy in Nautilus, in: Nautilus—The Biology and Paleobiology of a Living Fossil ( W. B. Saunders and N. H. Landman, eds.), Plenum Press. New York, pp. 547–560.Google Scholar
- Hagdorn, H., and Mundlos, R., 1983, Aspekte der Taphonomie von Muschelkalk-Cephalopoden. Teil 1. Siphozerfall und Füllmechanismus, N. Jb. Geol. Paläont. Abh. 166: 369–403.Google Scholar
- Hallam, A., 1969, Faunal realms and facies in the Jurassic, Palaeontology 12: 1–18.Google Scholar
- Hamada, T., 1977, Distribution and some ecological barriers of modern Nautilus species, Sci. Pap. Coll. Gen. Educ. Univ. Tokyo 27: 89–102.Google Scholar
- Hanai, T., and Oji, T., 1981, Early Cretaceous beachrock from the Miyako Group, northeast Japan, Proc. Jpn. Acad. 57 (B): 362–367.CrossRefGoogle Scholar
- Hanai, T., Obata, I., and Hayami, I., 1968, Notes on the Cretaceous Miyako Group, Mem. Nat. Sci. Mus. (Tokyo) 1: 20–28 (in Japanese with English abstract).Google Scholar
- Hewitt, R. A., and Westermann, G. E. G., 1990, Mosasaur tooth marks on the ammonite Placenticeras from the Upper Cretaceous Bearpaw Formation of Alberta, Can. J. Earth Sci. 27: 469–472.CrossRefGoogle Scholar
- Henderson, R. A., and McNamara, K. J., 1985, Taphonomy and ichnology of cephalopod shells in a Maastrichtian chalk from Western Australia, Lethaia 18: 305–322.CrossRefGoogle Scholar
- Hollman, R., 1962, Über die Subsolution und die “Knollenkalke” des Calcare Ammonitico Rosso Superiore im Monte Baldo (Malm, Norditalien), N. Jb. Geol. Paläont. Mh. 1962: 1963–1972.Google Scholar
- Jacobs, D. K., 1992, The support of hydrostatic load in cephalopod shells: Adaptive and ontogenetic explanations of shell form and evolution from Hooke 1695 to the present, in: Evolutionary Biology, Vol. 26 ( M. K. Hecht, B. Wallace, and R. J. Maclntyre, eds.), Plenum Press, New York, pp. 287–349.CrossRefGoogle Scholar
- Jenkyns, S. 0., 1985, The early Toarcian and Cenomanian–Turonian anoxic events in Europe: Comparisons and contrasts, Geol. Rundsch. 74: 505–518.CrossRefGoogle Scholar
- Jenkyns, S. 0., 1988, The early Toarcian (Jurassic) anoxic event: Stratigraphic. sedimentary. and geochemical evidence, Am. J. Sci. 288: 101–151.CrossRefGoogle Scholar
- Kase, T., Shigeta. Y., and Futakami. M., 1994, Limpet home depressions in Cretaceous ammonites, Lethaia 27: 49–58.CrossRefGoogle Scholar
- Kauffman, E G, 1978, Benthic environments and paleoecology of the Posidonienschiefer (Toarcian), N. Jb. Geol. Paläont. Abh. 157: 18–36.Google Scholar
- Kauffman, E. G., 1990, Mosasaur predation on ammonites during the Cretaceous: An evolutionary history, in: EvolutionaryPaleobiology of Behavior and Coevolution ( A. J. Boucot, ed.), Elsevier, New York, pp. 184–189.Google Scholar
- Kauffman, E. G., and Kesling, R., 1960, An Upper Cretaceous ammonite bitten by a mosasaur (South Dakota), Univ. Mich. Mus. Pal. Contrib. 15: 193–248.Google Scholar
- Kennedy, W. J., and Cobban, W. A., 1976, Aspects of ammonite biology, biogeography, and biostratigraphy, Spec. Pap. Palaeontol. 17: 1–94.Google Scholar
- Kidwell, S. M., 1986, Models for fossil concentrations: Paleobiologic implications, Paleobiology 12: 6–24.Google Scholar
- Kidwell, S. M., Fürsich, F. T., and Aigner, T., 1986, Conceptual framework for the analysis and classification of fossil concentrations, Palaios 1: 228–238.CrossRefGoogle Scholar
- Kidwell, S. M., and Jablonski, D., 1983, Taphonomic feedback—Ecological consequences of shell accumulation, in: Biotic Interactions in Recent and Fossil Benthic Communities ( M. J. S. Tevesz and P. L. McCall, eds.), Plenum Press, New York, pp. 195–248.Google Scholar
- Landman, N. H., Saunders, W. B., Winston, J. E., and Harries, P. J., 1987, Incidence and kinds of epizoans on the shells of live Nautilus, in: Nautilus—The Biology and Paleobiology of a Living Fossil ( W. B. Saunders and N. H. Landman, eds.), Plenum Press, New York, pp. 163–177.Google Scholar
- Lehmann, U., 1966, Ammoniten mit Kieferapparat und Radula aus Lias-Gehäusen, Paläontol. Z. 44: 25–31.Google Scholar
- Lehmann, U. 1971, Jaws, radula, and crop of Arnioceras (Ammonoidea), Palaeontology 14: 338-341.Google Scholar
- Lehmann. U. 1972, Aptychen als Kieferelemente der Ammoniten, Paläontol. Z. 46: 34–48.Google Scholar
- Lehmann, U. 1975, Über Nahrung und Ernährungsweise von Ammoniten, Paläontol. Z. 49: 187–195.Google Scholar
- Lehmann, U. 1976, Ammoniten: Ihr Leben und ihre Umwelt, Ferdinand Enke Verlag, StuttgartGoogle Scholar
- Lehmann, U., 1981, Ammonite jaw apparatus and soft parts, in: The Ammonoidea, Systematics Association Spec. Vol. 18 ( M. R. House and J. R. Senior, eds.), Academic Press, London, pp. 275–287.Google Scholar
- Lehmann, U., and Weitschat, W., 1973, Zur Anatomie und Ökologie von Ammoniten: Funde von Kropf und Kiemen. Paläontol. Z. 47: 69–76.Google Scholar
- Maeda, H., 1987, Taphonomy of ammonites from the Cretaceous Yezo Group in the Tappu area, northwestern Hokkaido, Japan, Trans. Proc. Palaeont. Soc. Jpn. N.S. 148: 285–305.Google Scholar
- Maeda, H., 1990, Mechanism of fossilization: Introduction to taphonomy, Kagaku 60: 159–163Google Scholar
- Maeda, H., 1991, Sheltered preservation: A peculiar mode of ammonite occurrence in the Cretaceous Yezo Group, Hokkaido, north Japan, Lethaia 24: 69–82.CrossRefGoogle Scholar
- Mapes, R. H., 1987, Upper Paleozoic cephalopod mandibles: Frequency of occurrence, modes of preservation, and paleoecological implications, J. Paleontol. 61: 521–538.Google Scholar
- Matsumoto, T., 1942, Fundamentals on the Cretaceous stratigraphy of Japan. Part I. Mem. Fac. Sci. Kyushu Imp. Univ. (D) 1: 130–280.Google Scholar
- Matsumoto, T., and Okada, H., 1973, Saku Formation of the Yezo geosyncline, Sci. Rep. Dep. Kyushu Univ. (Geol.) 11: 275–309 (in Japanese with English abstract).Google Scholar
- Matsushima, Y., 1990, Nautilus pompilius drifts on the northeast coast of Sumba Island, Indonesia, Bull. Kanagawa Prefect. Mus. Nat. Sci. 19: 33–43.Google Scholar
- Minato, M., 1953, Sedimentary Geology, Iwanami Book Co., TokyoGoogle Scholar
- Mundlos, R., 1970, Wohnkammerfüllung bei Ceratitengehäusen, N. Jb. Geol. Paldont. Mh. 1970: 18–27.Google Scholar
- Mutvei, H., and Reyment, R. A., 1973, Buoyancy control and siphuncle function in ammonoids, Palaeontology 16: 623–636.Google Scholar
- Neumann. N., Schumann, D., and Wendt, J., 1976, Geosynklinale Knollenkalke, Zentralbi. Geol. Paläontol. 2: 358–360.Google Scholar
- Ohana, T., and Kimura, T., 1991, Permineralized Otozamites leaves (Bennettitales) from the Upper Cretaceous of Hokkaido, Japan, Trans. Proc. Palaeont. Soc. Jpn. N.S. 164: 944–963.Google Scholar
- Ohta, S., 1983, Photographic census of large-sized benthic organisms in the bathyal zone of Suruga Bay, central Japan, Bull. Ocean Res. Inst. Univ. Tokyo 15: 1–155.Google Scholar
- Okada, H., 1983, Collision orogenesis and sedimentation in Hokkaido, Japan, in: Accretion Tectonics in the Circum-Pacific Regions ( M. Hashimoto and S. Uyeda, eds.), Terrapub, Tokyo, pp. 91–105.CrossRefGoogle Scholar
- Okamoto, T., 1988, Changes in life orientation during the ontogeny of some heteromorph ammonoids, Palaeontolo 31: 281–294.Google Scholar
- Onuki, Y., and Bando, Y., 1959, On the Inai Group of the Lower and Middle Triassic System (stratigraphical and paleontological studies of the Triassic System in the Kitakami Massif, northeast Japan:-3), Contrib. Inst. Geol. Paleontol. Tohoku Univ. 50: 1–69 ).Google Scholar
- Otto, M., 1994, Zur Frage der “Weichteilerhaltung” im Hunsrückschiefer. Geol. Palaeontol. 28: 45–63.Google Scholar
- Prévôt, L., and Lucas, J., 1990, Phosphate, in: Palaeoniology—A Synthesis ( D. E. G. Briggs and P. R. Crowther, eds.), Blackwell Science Publications, Oxford, pp. 256–257.Google Scholar
- Raiswell, R., 1976, The microbiological formation of carbonate concretions in the Upper Lias of N. E. England, Chem. Geol. 18: 227–244.CrossRefGoogle Scholar
- Raup, D. M., 1973, Depth inferences from vertically embedded cephalopods, Lethaia 6: 217–226.CrossRefGoogle Scholar
- Raup, D. M., and Chamberlain, J. A., Jr., 1967, Equations for volume and center of gravity in ammonoid shells, J. Paleontol. 41: 566–574.Google Scholar
- Reeside, J. B., and Cobban, W. A., 1960, Studies of the Mowry Shale (Cretaceous) and contempo-rary formations in the United States and Canada, U.S. Geol. Surv. Prof. Pap. 355: 1–126.Google Scholar
- Reitner, J., and Urlichs, M., 1983, Echte Weichteilbelemniten aus dem Untertoarcium (Posi-donienschiefer) Südwestdeutschlands, N. Jb. Geol. Paläont. Abh. 165: 450–465.Google Scholar
- Renz, O., 1979, Lower Cretaceous Ammonoidea from the northern Atlantic, Leg 47B, Hole 398D, D.S.D.P., Mit. Rep. DSDP 47: 361–365.Google Scholar
- Reyment, R. A., 1958, Some factors in the distribution of fossil cephalopods, Stock. Contrib. Geol. 1: 97–184.Google Scholar
- Reyment, R. A., 1973, Factors in the distribution of fossil cephalopods. Part 3. Experiments with exact models of certain shell types, Bull. Geol. Inst. Univ. Upps. N.S. 4: 7–41.Google Scholar
- Rothpletz, A., 1909, Über die Einbettung der Ammoniten in den Solnhofener Schichten, Koningl. Bayer. Akad. Wiss. Abh. 24 (2): 311–337.Google Scholar
- Roux, M., 1990, Underwater observations of Nautilus macromphalus off New Caledonia, Chambered Nautilus Newsl. 60.Google Scholar
- Roux, M., Bouchet, P., Bourseau, J. P., Gaillard, C., Grandperrin, R., Guille, A., Laurin B., Monniot, C., Richer de Forges, B., Rio, M., Segonzac, M., Vacelet, J., and Zibrowius, H., 1991, L’environnement bathyal au large de la Nouvelle-Calédonie: Résultes préliminaires de la campagne CALSUB et conséquences paléoécologiques, Bull. Soc. Geol. Fr. 162: 675–685.Google Scholar
- Schindewolf, O. H., 1934, Über Epöken auf Cephalopoden-Gehäusen, Palëontol. Z. 16: 15–31.Google Scholar
- Schlanger, S. O., and Jenkyns, H. C.. 1976, Cretaceous oceanic anoxic events: Causes and consequences, Geol. Mijnbouw 55: 179–185.Google Scholar
- Scott, G., 1940, Paleontological factors controlling the distribution and mode of life of Cretaceous ammonoids in the Texas area, J. Paleontol. 14: 299–323.Google Scholar
- Seilacher, A., 1960, Epizoans as a key to ammonoid ecology, J. Paleontol. 34: 189–193Google Scholar
- Seilacher, A., 1963, Umlagerung und Rolltransport von Cephalopoden-Gehäusen, N. lb. Geol. Paläont. Mh. 1963: 593–615.Google Scholar
- Seilacher, A., 1966, Lobenlibellen und Füllstruktur bei Ceratiten, N. Jb. Geol. Paläont. Abh. 125: 480–488.Google Scholar
- Seilacher, A., 1968, Sedimentationprozesse im Ammoniten gehäusen, Akad. Wiss. Lit. Abh. Math. Naturwiss. Kl. 1967 (9): 191–203.Google Scholar
- Seilacher, A., 1970, Begriff und Bedeutung der Fossil-Lagerstätten, N. Jb. Geol. Paläont. Mh. 1970: 34–39.Google Scholar
- Seilacher, A., 1971, Preservational history of ceratite shells, Palaeontology 14: 16–21.Google Scholar
- Seilacher, A., 1982, Ammonite shells as habitats in the Posidonia Shale—floats or benthic islands? N. Jb. Geol. Paläont. Mh. 1982: 98–114.Google Scholar
- Seilacher, A., 1988, Schlangensterne (Aspidura) als Schlüssel zur Entstehungsgeschichte des Muschelkalks, in: Neue Forschungen zur Erdgeschichte von Crailsheim, Vol. 1 ( H. Hagdorn, ed.), Goldschneck Verlag, Stuttgart, pp. 85–98.Google Scholar
- Seilacher, A., Andalib, F., Dietl, G., and Gocht, H., 1976, Preservational history of compressed Jurassic ammonites from Southern Germany, N. Jb. Geol. Paläont. Abh. 152: 303–356.Google Scholar
- Seilacher, A., and LaBarbera, M., 1995, Ammonites as cartesian divers, Palaios 10: 493–506.CrossRefGoogle Scholar
- Seilacher, A., Reif, W. E., and Westphal, F., 1985, Sedimentological, ecological, and temporal patterns of fossil Lagerstätten, Phil. Trans. R. Soc. Lond. B311: 5–23.CrossRefGoogle Scholar
- Shigeta, Y., 1993, Post-hatching early life history of Cretaceous Ammonoidea, Lethaia 26: 133–145.CrossRefGoogle Scholar
- Shikama, T., and Hirano, H., 1970, On the mode of occurrence of ammonites in the Nishinakayama Formation, Toyora Group, Sci. Rep. Yokohama Nat. Univ. Second Sect. 16: 61–71.Google Scholar
- Shimizu, S., 1931, The marine Lower Cretaceous deposits of Japan, with special reference to the ammonites-bearing zones, Sci. Rep. Tohoku Imp. Univ. Second Ser. 15: 1–40.Google Scholar
- Stürmer, W. 1969, Pyrit-Erhaltung von Weichteilen bei devonischen Cephalopoden, Paläontol. Z. 43: 10–12.Google Scholar
- Tanabe, K., 1979, Palaeoecological analysis of ammonoid assemblages in the Turonian Scaphites facies of Hokkaido, Palaeontology 22: 609–630.Google Scholar
- Tanabe, K., 1983a, Mode of life of an inoceramid bivalve from the Lower Jurassic of west Japan, N. Jb. Geol. Paläont. Mh. 1983: 419–428.Google Scholar
- Tanabe, K., 1983b, The jaw apparatuses of Cretaceous desmoceratid ammonites, Palaeontology 26: 677–686.Google Scholar
- Tanabe, K., 1991, Early Jurassic macrofauna of the oxygen-depleted epicontinental marine basin in the Toyora area, west Japan, Saito Ho-on Kai Spec. Pub. 3: 147–161.Google Scholar
- Tanabe, K., Inazumi, A., Ohtsuka, Y., Katsuta, T., and Tamahama, K 1982, Litho-and biofacies and chemical composition of the Lower Jurassic Nishinakayama Formation (Toyora Group) in west Japan, idem. Ehime Univ. Sci. Ser. D 9: 47–62 (in Japanese with English abstract).Google Scholar
- Tanabe, K., Inazumi, A., Tamahama, K., and Katsuta, T., 1984, Taphonomy of half and compressed ammonites from the Lower Jurassic black shales of the ‘Toyora area, west Japan, Palaeogeogr. Palaeoclimatol. Palaeoecol. 47:329–346Google Scholar
- Tanabe, K., Landman, N. H., and Weitschat, W., 1993, Septal necks in Mesozoic Ammonoidea: Structure, ontogenetic development, and evolution, in: The Ammonoidea: Environment, Ecology, and Evolutionary Change, Systematics Association Spec. Vol. 47 ( M. R. House, ed.), Clarendon Press, Oxford, pp. 57–84.Google Scholar
- Taylor, P. D., 1979, Paleoecology of the encrusting epifauna of some British Jurassic bivalves, Palaeogeogr. Palaeoclimatol. Palaeoecol. 28: 241–262.CrossRefGoogle Scholar
- Toriyama, R., Sato, T., and Hamada, T., 1966, Nautilus pompilius drifts on the coast of Thailand, Jpn. J. Geol. Geogr. 36: 149–161.Google Scholar
- Trueman, A. E., 1941, The ammonite body chamber, with special reference to the buoyancy and mode of life of the living ammonite, Geol. Soc. Lond. Q. J. 96: 339–383.CrossRefGoogle Scholar
- Ward, P. D., 1987, The Natural History of Nautilus, Allen and Unwin, Boston.Google Scholar
- Ward, P. D., and Westermann, G. E. G., 1977, First occurrence, systematics and functional morphology of Nipponites from the Americas, J. Paleontol. 51: 367–372.Google Scholar
- Ward, P. D., and Westermann, G. E. G., 1985, Cephalopod paleoecology, in: Mollusks, Notes for a Short Course, University of Tennessee Studies in Geology, Vol. 13 (D. J. Bottjer, C. S. Hickman, and P. D. Ward, eds.), University of Tennessee, Knoxville Publication, Knoxville, pp. 215–229Google Scholar
- Wendt, J., 1971, Genese und Fauna submariner sedimentärer Spaltenfüllungen im mediterranen Jura, Paläontogr. A 136: 121–192.Google Scholar
- Wendt, J., 1973, Cephalopod accumulations in the Middle Triassic Hallstatt-Limestone of Yugoslavia and Greece, N. Jb. Geol. Paläont. Mh. 1973: 624–640.Google Scholar
- Wendt, J., and Aigner, T., 1982, Condensed Griotte facies and cephalopod accumulation in the Upper Devonian of the eastern Anti-Atlas, Morocco, in: Cyclic and Event Stratification ( G. Einsle and A. Seilacher, eds.), Springer-Verlag, Berlin, pp. 326–332.CrossRefGoogle Scholar
- Westermann, G. E. G., 1977, Form and function of orthoconic cephalopod shells with concave septa, Paleobiology 3: 300–321.Google Scholar
- Westermann, G. E. G., 1985, Post-mortem descent with septal implosion in Silurian nautiloids, Paläontol. Z. 59: 79–97.Google Scholar
- Wright, C. W., and Kennedy, W. J., 1981, The Ammonoidea of the Plenus Marls and the Middle Chalk, Palaeontogr. Soc. Monogr., No. 560: 1–148.Google Scholar
- Wright, C. W., and Kennedy, W. J., 1984, The Ammonoidea of the Lower Chalk I Palaeontogr. Soc. Monogr., No. 567: 1–126.Google Scholar
- Zeiss, A., 1969, Weichteile ectocochleater paläozoischer Cephalopoden in Röntgenaufnahmen und ihre paläontologische Bedeutung, Paldontol. Z. 43:13–27Google Scholar
- Ziegler, B., 1967, Ammoniten-Ökologie am Beispiel des Oberjura, Geol. Rundsch. 56: 439–464.CrossRefGoogle Scholar
Copyright information
© Springer Science+Business Media New York 1996