Alzheimer Disease: Major Neurotransmitter Deficits. Can they be Corrected?

  • Ezio Giacobini
Part of the Advances in Behavioral Biology book series (ABBI, volume 44)

Abstract

During the several year progression of Alzheimer disease (AD), a continuous loss of neurons is observed in two major forebrain nuclei of the central nervous system (CNS): the locus coeruleus (LC) and the nucleus basalis of Meynert (NBM). Numerous neuropathological and biochemical studies of AD brain have revealed a substantial decrease of noradrenergic neurons in the LC and a 70% depletion of norepinephrine (NE) in the cortex (cf. Nazarali and Reynolds, 1992). The serotonergic system is also affected (cf. Nazarali and Reynolds, 1992).

Keywords

Alzheimer Disease Locus Coeruleus AChE Activity Cholinergic Neuron AChE Inhibition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Becker, R.E. and Giacobini, E., 1991, “Alzheimer Disease: Current Research in Early Diagnosis”, R.E. Becker and E. Giacobini, eds., Taylor und Francis, New York.Google Scholar
  2. Bowen, D.M., 1983, Biochemical assessment of neurotransmitter and metabolic dysfunction and cerebral atrophy in Alzheimer’s disease, in: “Banbury Report 15: Biological Aspects of Alzheimer’s Disease’, Cold Spring Harbor Laboratory.Google Scholar
  3. Bowen, D.M., Smith, C.B., White, P. and Davison, A.N., 1976, Neurotransmitter-related enzymes and indices of hypoxia in senile dementia and other abiotrophies, Brain 99: 459–496.PubMedCrossRefGoogle Scholar
  4. Chan-Palay, V. and Assn, E., 1989, Alterations in catecholamine neurons of the locus coeruleus in senile dementia of the Alzheimer type and in Parkinson’s disease with and without dementia and depression, J. Comp. Neurol. 287: 373–392.PubMedCrossRefGoogle Scholar
  5. Cole, B.J. and Robbins, T.W., 1992, Forebrain norepinephrine: role in controlled information processing in the rat, Neuropsychopharmacology 7 (2): 129–142.PubMedGoogle Scholar
  6. Coyle, J.T., Price, D.L. and DeLong, M.R., 1983, Alzheimer’s disease: a disorder of cortical cholinergic innervation, Science 219: 1184–1190.PubMedCrossRefGoogle Scholar
  7. Cuadra, G., Mori, F., Williams, E., Zhu, X-D. and Giacobini, E., 1993, Cholinesterase inhibitors differentially modify release of acetylcholine and biogenic amines in rat cortex in vivo, Soc. Neurosci. Abst. 19 (514.2): 1252.Google Scholar
  8. Davies, P. and Maloney, A.F.J., 1976, Selective loss of central cholinergic neurons in Alzheimer’s disease, Lancet 2: 1403.PubMedCrossRefGoogle Scholar
  9. Decker, M.W. and McGaugh, J.L., 1991, The role of interactions between the cholinergic system and other neuromodulatory systems in learning and memory, Synapse 7: 151–168.PubMedCrossRefGoogle Scholar
  10. DeKosky, S.T. and Scheff, S.W., 1990, Synapse loss in frontal cortex biopsies in Alzheimer’s disease: correlation with cognitive severity, Ann. Neurol. 27 (5): 457–464.PubMedCrossRefGoogle Scholar
  11. DeSarno, P., Pompon, M., Giacobini, E., Tang, X.C. and Williams, E., 1989, The effect of heptylphysostigmine, a new cholinesterase inhibitor, on the central cholinergic system of the rat, Neurochem. Res. 14 (10): 971–977.CrossRefGoogle Scholar
  12. Engel, R.R. and Satzger, W., 1992, Methodological problems in assessing therapeutic efficacy in patients with dementia, Drugs and Aging 2 (2): 79–85.PubMedCrossRefGoogle Scholar
  13. Etienne, P., Robitaille, Y., Wood, P., Gauthier, S., Nair, N.P.V. and Quirion, R., 1986, Nucleus basalis neuronal loss, neuritic plaques and choline acetyltransferase activity in advanced Alzheimer’s disease, Neuroscience 19 (4): 1279–1291.PubMedCrossRefGoogle Scholar
  14. Giacobini, E., 1983, A new hypothesis of aging of the cholinergic synapse, in: “Aging of the Brain”, D. Samuel et al., eds., Raven Press, New York, pp. 197–210.Google Scholar
  15. Giacobini, E. and Becker, R.E., 1988, “Current Research in Alzheimer Therapy”, E. Giacobini and R. Becker, eds., Taylor und Francis, New York.Google Scholar
  16. Hardy, J., Adolfsson, R., Alafuzoff, I., Bucht, G., Marcusson, J., Nyberg, P., Perdahl, E., Wester, P. and Winblad, B., 1985, Transmitter deficits in Alzheimer’s disease, Neurochem. Int. 7 (4): 545–563.PubMedCrossRefGoogle Scholar
  17. Kmjevic, K., 1984, Neurotransmitters in cerebral cortex–a general account, in:“Cerebral Cortex. Functional Properties of Cortical Cells, Vol. 2”, E.G. Jones and A. Peters, eds., Plenum Press, New York, pp. 39–61.CrossRefGoogle Scholar
  18. Levine, D.S. and Parks, R., 1992, Frontal lesion effects on verbal fluency in a network model, Intl. Joint Conference on Neural Networks 2: 39–45.Google Scholar
  19. McGaugh, J.L., Introinin Collison, I.B. and Decker, M.W., 1992, Interaction of hormones and neurotransmitters in the modulation of memory storage, in: “Memory Function and Aging-Related Disorders”, J.E. Morley, R.M. Coe, R. Strong and G.T. Grossberg, eds., Springer, New York, pp. 37–64.Google Scholar
  20. McGeer, P.L., McGeer, E.G., Suzuki, J., Dolman, C.E. and Nagai, T., 1984, Aging, Alzheimer’s diseAse, and the cholinergic system of the basal forebrain, Neurology 34: 741–745.PubMedCrossRefGoogle Scholar
  21. Messamore, E., Ogane, N. and Giacobini, E., 1993a, Cholinesterase inhibitor effects on extracellular acetylcholine in rat striatum, Neuropharmacology 32 (3): 291–296.PubMedCrossRefGoogle Scholar
  22. Messamore, E., Warpman, U., Ogane, N. and Giacobini, E., 1993b, Cholinesterase inhibitor effects on extracellular acetylcholine in rat cortex, Neuropharmacology 32 (8): 745–750.PubMedCrossRefGoogle Scholar
  23. Messamore, E., Warpman, U., Williams, E. and Giacobini. E. 1993c, Muscarinic receptors mediate attenuation of extracellular acetylcholine levels in rat cerebral cortex after cholinesterase inhibition, Neurosci. Lett. 158: 205–208.Google Scholar
  24. Milner, T.A., 1991, Cholinergie neurons in the rat septal complex: ultrastructural characterization and synaptic relations with catecholaminergic terminals, J. Comp. Neurol. 314: 37–54.PubMedCrossRefGoogle Scholar
  25. Moriearty, P.L. and Becker, R.E., 1992, Inhibition of human brain and RBC acetylcholinesterase (AChE) by heptyl-physostigmine (HPTL), Meth. Find. Exp. Clin. Pharmacol. 14 (8): 615–621.Google Scholar
  26. Nagai, T., McGeer, P.L., Peng, J.M., McGeer, E.G. and Dolman, C.E., 1983, Choline acetyltransferase immunohistochemistry in brains of Alzheimer’s disease patients and controls, Neurosci. Lett. 36: 195199.Google Scholar
  27. Nazarali, A.J., and Reynolds, G.P., 1992, Monoamine neurotransmitters and their metabolites in brain regions in Alzheimer’s disease: a postmortem study, Cell. Mol. Neurobiol. 12 (6): 581–587.PubMedCrossRefGoogle Scholar
  28. Ogane, N., Giacobini, E. and Struble, R., 1992, Differential inhibition of acetylcholinesterase molecular forms in normal and Alzheimer disktsiqe brain, Brain Res. 589: 307–312.PubMedCrossRefGoogle Scholar
  29. Palmer, A.M. and DeKosky, S.T., 1993, Monoamine neurons in aging and Alzheimer’s disease, J. Neural Transm. 91: 135–159.CrossRefGoogle Scholar
  30. Pamavelas, J.G., 1990, Neurotransmitters in the cerebral cortex, in: “Progress in Brain Research, Vol. 85”, H.B.M. Uylings, C.G. Van Eden, J.P.C. De Bruin, M.A. Corner and M.G.P. Feenstra, eds., Elsevier, Amsterdam, pp. 13–29.Google Scholar
  31. Perry, E.K., Tomlinson, B.E., Blessed, G., Perry, R.H., Cross, A.J. and Crow, T.J., 1981, Neuropathological and biochemical observations on the noradrenergic system in Alzheimer’s disease, J. Neurol. Sci. 51: 279–287.PubMedCrossRefGoogle Scholar
  32. Summers, W.K., Majovski, L.V., Marsh, G.M., Tachiki, K. and Kling, A., 1986, Oral tetrahydroaminoacridine in long-term treatment of senile dementia, Alzheimer type, New Engl. J. Med., 315 (20): 1241–1245.PubMedCrossRefGoogle Scholar
  33. Whitehouse, P.J., Price, D.L., Clark, A.W., Coyle, J.T. and DeLong, M.R., 1981, Alzheimer disease: evidence for selective loss of cholinergie neurons in the nucleus basalis, Ann. Neurol. 10 (2): 122–126.PubMedCrossRefGoogle Scholar
  34. Whitehouse, P.J., Price, D.L., Struble, R.G., Clark, A.W., Coyle, J.T. and DeLong, M.R., 1982, Alzheimer’s disease and senile dementia: loss of neurons in the basal forebrain, Science 215: 1237139.Google Scholar
  35. Zec, R.F., Landreth, E.S., Vicari, S.K, Belman, J., Feldman, E., Andrise, A., Robbs, R., Becker, R. and Kumar, V., 1992, Alzheimer disease assessment scale: a subtest analysis, Alzheimer Disease and Associated Disorders 6 (3): 164–181.PubMedCrossRefGoogle Scholar
  36. Zweig, R.M., Schegg, K.M., Peacock, J.H and Melarkey, D., 1989, A case of Alzheimer’s disease and hippocampal sclerosis with normal cholinergie activity in basal forebrain, neucortex, and hippocampus, Neurology 39: 288–290.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Ezio Giacobini
    • 1
  1. 1.Department of PharmacologySouthern Illinois University School of MedicineSpringfieldUSA

Personalised recommendations