Amyloidogenic Fragments of Amyloid Precursor Protein in Cells Cultured under Leupeptin

  • Kayo Tsuzuki
  • Ryo Fukatsu
  • Yuji Takamaru
  • Nobuhiro Fujii
  • Naohiko Takahata
Part of the Advances in Behavioral Biology book series (ABBI, volume 44)

Abstract

The extracellular deposition of β/A4 protein is the most characteristic neuropathological change observed in the brain of patients suffering from Alzheimer’s disease. The accumulation of β/A4 protein is notable at an early stage of the disease, and increases to a high extent during the progression of the disease which, in turn, is thought to be responsible for generation of neurofibrillary tangles leading to neuronal cell death. The β/A4 protein is a proteolytically cleaved product of receptor-like integral transmembrane protein, the amyloid precursor protein (APP).1,2,3 The mechanism and subcellular compartment of β/A4 protein production are still unknown.

Keywords

Amyloid Precursor Protein Microsomal Fraction Mitochondrial Fraction Amyloid Precursor Protein Processing Sucrose Density Gradient Centrifugation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Kang, Lemaire, A. Unterbeck, J.M. Salbaum, C.L. Masters, K.H. Grzeschik, G. Multhaup, K. Beyreuther, and B. Muller-Hill, The precursor of Alzheimer’s disease amyloid A4 protein resembles a cell-surface receptor, Nature 325: 733–736 (1987).Google Scholar
  2. 2.
    N. Kitaguchi, Y. Takahashi, Y. Tokushima, S. Shiojiri, and H. Ito, Novel precursor of Alzheimer’s disease amyloid protein shows protease inhibitory activity, Nature 331: 530–532 (1988).Google Scholar
  3. 3.
    C. Haass, M.G. Schlossmacher, A.Y. Hung, C. Vigo-Pelfrey, A. Mellon, B.L. Ostaszewski, I. Lieberburg, E.H. Koo, D. Schenk, D.B. Teplow, and D.J. Selkoe, Amyloid ß-peptide is produced by cultured cells during normal metabolism, Nature 359: 322–325 (1992).Google Scholar
  4. 4.
    F.S. Esch, P.S. Keim, E.C. Beattie, R.W. Blacher, A.R. Culwell, T. Oltersdorf, D. McClure, P.J. Ward, Cleavage of amyloid ß peptide during constitutive processing of its precursor, Science 248: 1122–1124 (1990).Google Scholar
  5. 5.
    T. Oltersdorf, L.C. Fritz, D.B. Schenk, I. Lieberburg, K.L. Johnson-Wood, E.C. Beattie, P.J. Ward, R.W. Blacher, H.F. Dovey, and S. Sinha, The secreted form of the Alzheimer’s amyloid precursor protein with the Kunitz domain is protease nexin-II, Nature 341: 144–147 (1989).Google Scholar
  6. 6.
    G.M. Cole, D. Galasko, I.P. Shapiro, and T. Saitoh, Stimulated platelets release amyloid ß-protein precursor, Biochem. Biophys. Res. Commun 170: 288–295 (1990).Google Scholar
  7. 7.
    W.E. Van Nostrand, A.H. Schmaier, J.S. Farrow, and D.D. Cunningham, Protessi nexin-II (amyloid ß-protein precursor):a platelet a-granule protein, Science 248: 745–748 (1990).Google Scholar
  8. 8.
    R.A. Nixon, A.M. Cataldo, P.A. Paskevich, D.J. Hamilton, T.R. Wheelock, and L. Kanaley-Andrews, The lysosomal system in neurons, in: “Proteases and Protease Inhibitors in Alzheimer’s Disease Pathogenesis, C.D.B. Banner and R.A. Nixon, eds., Annals New York Academy of Sciences, New York (1992).Google Scholar
  9. 9.
    G.M. Cole, L. Bell, Q.B. Truong, and T. Saitoh, An endosomal-lysosomal pathway for degradation of amyloid precursor protein, in: “Proteases and protease inhibitors in Alzheimer’s disease pathogenesis, C.D.B. Banner and R.A. Nixon, eds., Annals New York Academy of Sciences, New York (1992).Google Scholar
  10. 10.
    S. Estus, T.E. Golde, T. Kunishita, D. Blades, D. Lowery, M. Eisen, M. Usiak, X. Qu, T. Tbira, B.D. Greenberg, and S.G. Younkin, Potentially amyloidOgenic, carboxyl-terminal derivatives of the amyloid protein precursor, Science 255: 726–728 (1992).PubMedCrossRefGoogle Scholar
  11. 11.
    T.E. Golde, S. Estus, L.H. Younkin, D.J. Selkoe, and S.G. Younkin, Processing of the amyloid protein precursor to potentially amyloidogenic derivatives, Science 255: 728–730 (1992).PubMedCrossRefGoogle Scholar
  12. 12.
    C. Haass, E.H. Koo, A. Mellon, A.Y. Hung, and D.J. Selkoe, Targeting of cell-surface ß-amyloid precursor protein to lysosomes: alternative processing into amyloid-bearing fragments, Nature 357: 500–503 (1992).PubMedCrossRefGoogle Scholar
  13. 13.
    J. Busciglio, D.H. Gabuzda, P. Matsudaira, and B.A. Yankner, Generation of ß-amyloid in the secretory pathway in neuronal and nonneuronal cells, Proc. Natl. Acad. Sci. 90: 2092–2096 (1993).PubMedCrossRefGoogle Scholar
  14. 14.
    J.W. Porteous, and B. Clark, The isolation and characterization of subcellular components of the epithelial cells of rabbit small intestine, Biochem. J. 96: 159–171 (1965).PubMedGoogle Scholar
  15. 15.
    P. Tulkens, H. Beaufay, and A. Trouet, Analytical fractionation of homogenates from cultured rat embryo fibroblasts, J. Cell. Biol. 63: 383–401 (1974).PubMedCrossRefGoogle Scholar
  16. 16.
    J.S. Whitson, C.G. Glabe, E. Shintani, A. Abcar, and C.W. Cotman, ß-amyloid protein promotes neuritic branching in hippocampal cultures, Neurosci. Lett. 110: 319–324 (1990).PubMedCrossRefGoogle Scholar
  17. 17.
    G.L. Caporaso, S.E. Gandy, J.D. Buxbaum, and P. Greengard, Chloroquine inhibits intracellular degradation but not secretion of Alzheimer ß/A4 amyloid precursor protein, Proc. Natl. Acad. Sci. 89: 2252–2256 (1992).PubMedCrossRefGoogle Scholar
  18. 18.
    C. Nordstedt, G.L. Caporaso, J. Thyberg, S.E. Gandy, and P. Greengard, Identification of the Alzheimer ß/A4 amyloid precursor protein in clathrin-coated vesicles purified from PC12 cells, J. Biol. Chem. 268: 608–612 (1993).PubMedGoogle Scholar
  19. 19.
    R. Siman, S. Mistretta, J.T. Durkin, M.J. Savage, T. Loh, S. Trusko, and R.W. Scott, Processing of the ß-amyloid precursor, J. Biol. Chem. 268: 16602–16609 (1993).PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Kayo Tsuzuki
    • 1
  • Ryo Fukatsu
    • 2
  • Yuji Takamaru
    • 3
  • Nobuhiro Fujii
    • 1
  • Naohiko Takahata
    • 2
  1. 1.Department of MicrobiologyJapan
  2. 2.Department of NeuropsychiatrySapporo Medical University School of MedicineJapan
  3. 3.Department of Psychiatry and NeurologyHokkaido University School of MedicineSapporo 060Japan

Personalised recommendations