Atmospheric Dispersion Around an Isolated Hill — Programme and Preliminary Results

  • Klaus Massmeyer
  • Heiner Geiss
  • Karl Heinemann
  • Michael Möllmann
  • Gebhard Polster
Part of the NATO · Challenges of Modern Society book series (NATS, volume 10)

Abstract

During the last twenty years a lot of dispersion experiments have been conducted describing atmospheric diffusion as a function of surface roughness, meteorological conditions and source configuration. The most common approach was based on a modification of the Pasquill Gifford dispersion curves resulting in site-specific Gaussian plume parameters. These experiments were carried out to provide data for parameterizing atmospheric diffusion and they are generally designed to obtain two types of measurements:
  • local distributions of tracer concentrations and

  • meteorological measurements characterizing the atmospheric conditions during the period of tracer release.

Keywords

Complex Terrain Tracer Experiment Geostrophic Wind Atmospheric Dispersion Meteorological Tower 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. Bonnenberg SPI, and Drescher SPI, (ed.), 1984, Abwärme im Oberrheintal, Phase 2, Abschlußbericht, Im Auftrag des Umweltbundesamtes, Umweltforschungsplan des Bundesministers des Innern, Vorhaben 10407354/02.Google Scholar
  2. Geiss, H., Nester, K., Thomas, P., and Vogt, K.J., 1981. In der Bundesrepublik Deutschland ermittelte Ausbreitungsparameter für 100 m Emissionshöhe, Jül 1707/KfK 3085.Google Scholar
  3. Gross, G., 1984, Eine Erklärung für das Phänomen Malojaschlange durch numerische Simulation, Dissert., Inst. f. Meteorologie, TH Darmstadt.Google Scholar
  4. Gross, G., 1985, Private communication, Inst. f. Meteorologie, TH Darmstadt.Google Scholar
  5. Gudiksen, P.H., Ferber, G.J., Fowler, M.M., Eberhard, W.L., Fosberg, M.A., and Knuth, W.R., 1984, Field studies of transport and dispersion of atmospheric tracers in nocturnal drainage flows, Atmospheric Environment, 18:713.CrossRefGoogle Scholar
  6. Gutfreund, P.D., Liu, C.S., Nicholson, B.R., Roberts, E.M., 1983, COMPLEX 1 and COMPLEX 2. model performance evaluation in Nevada and New Mexico, J. Air Poll. Contr. Ass., 33: 864.CrossRefGoogle Scholar
  7. Hanna, S.R., 1983, Lateral turbulence intensity and plume meandering during stable conditions. J. Clim. Appl. Met., 22:1424.CrossRefGoogle Scholar
  8. Hunt, J.C.R., Puttock, J.S., and Snyder, W.H., 1979, Turbulent diffusion from a point source in stratified and neutral flows around a threedimensional hill — Part 1, Diffusion equation analysis, Atmospheric Environment, 13:1227.CrossRefGoogle Scholar
  9. Johnson, W.B., 1983, Meteorological tracer techniques for parameterizing atmospheric dispersion, J. Clim. Appl. Met., 22:931.CrossRefGoogle Scholar
  10. Lamb, B.K., Lorenzen, A., and Shair, F.H., 1978, Atmospheric dispersion transports within coastal regions — Part 1, Tracer study of power plant emissions from the Oxnard plain, Atmospheric Environment, 12:2089.CrossRefGoogle Scholar
  11. Lamb, B.K., and Shair, F.H., 1978, Atmospheric dispersion and transport within coastal regions — Part 2, Tracer study of industrial emissions in the California delta region, Atmospheric Environment, 12:2101.CrossRefGoogle Scholar
  12. Pflüger, U., 1982, Versuch der numerischen Simulation einer Land- Seewind Zirkulation mit einem nichthydrostatischen Modell, Masters thesis, Inst. f. Meteorologie, TH Darmstadt.Google Scholar
  13. Pielke, R.A., 1984, Mesoscale Meteorological Modeling, Academic Press, Orlando.Google Scholar
  14. Projektleitung PSE (Projekt Sicherheitsstudien Entsorgung) (ed.), 1985, Berechnung der Ausbreitung von Radionukliden über den Luft- und Nahrungspfad und der potentiellen Strahlenexposition bei Störfallereignissen in oberirdischen Anlagen der Entsorgung, Berlin.Google Scholar
  15. Reible, D.D., and Shair, F.H., 1981, Plume dispersion and bifurcation in directional shear flows associated with complex terrain, Atmospheric Environment, 15:1165.CrossRefGoogle Scholar
  16. Ryan, W., Lamb, B., and Robinson, E., 1984, An atmospheric tracer investigation of transport and diffusion around a large, isolated hill, Atmospheric Environment, 18:2021.Google Scholar
  17. Straka, J., Geiss, H., and Vogt, K.J., 1981, Diffusion of waste air puffs and plumes under changing weather conditions, Contr. Atm., Phys., 54:207.Google Scholar
  18. Thomas, P., et al., 1981, Experimental determination of the atmospheric dispersion parameters at the Karlsruhe nuclear research center for 60 m and 100 m emission heights, Part 1: Evaluation of measurements, KfK 3091.Google Scholar
  19. Turner, D.B., 1970, Workbook of Atmospheric Dispersion Estimates, Environmental Protection Agency, Research Triangle Park, North Carolina.Google Scholar
  20. Vogt, K.J., and Geiss, H., 1974, Tracer experiments on the dispersion of plumes over terrain of major surface roughness, Jül-1131-St.Google Scholar
  21. Vogt, K.J., Geiss, H., and Polster, G., 1978, New sets of diffusion parameters resulting from tracer experiments in 50 m and 100 m release height, 9th International Technical Meeting on Air Pollution Modeling and its Application, Toronto.Google Scholar
  22. Wallbaum, F., 1982, Numerische Simulation atmosphärischer Strömungen im Mesoscale Gamma, Dissert., Inst. f. Meteorologie, TH Darmstadt.Google Scholar
  23. Wippermann, F., and Gross, G., 1981, On the construction of orographically influenced wind roses for given distributions of the large scale wind, Contr. Phys. Atm., 54:492.Google Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • Klaus Massmeyer
    • 1
  • Heiner Geiss
    • 1
  • Karl Heinemann
    • 1
  • Michael Möllmann
    • 1
  • Gebhard Polster
    • 1
  1. 1.ASS-UWKernforschungsanlage Jülich GmbHJülich 1Germany

Personalised recommendations