The Cervical Sympathetic Trunk-Submandibular Gland Axis in the Regulation of Inflammatory Responses

  • Ronald Mathison
  • Joseph S. Davison
  • A. Dean Befus
Part of the Hans Selye Symposia on Neuroendocrinology and Stress book series (HSSN, volume 3)

Abstract

Elaborate homeostatic mechanisms have been developed for regulating the main physiological variables of body temperature, heart rate, blood pressure, water balance and availability of nutrients. Major threats to an organism whether through a stress response or other insults such as infection (viral, fungal, bacterial) and noninfectious pathological causes (e.g. pancreatitis, ischemia, multiple trauma and tissue injury, haemorrhagic shock, immune-mediated organ dysfunction) elicit homeostatic responses in the major body systems; nervous, endocrine, immune, cardiovascular, respiratory, liver, kidneys and gastrointestinal tract.

Keywords

Nerve Growth Factor Submandibular Gland Mean Arterial Blood Pressure Thyrotropin Release Hormone Superior Cervical Ganglion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D.P. Cardinali, H.E. Romeo, Peripheral neuroendocrine interrelationships in the cervical region, NIPS 5:100 (1990).Google Scholar
  2. 2.
    H.E. Romeo, E. Spinedi, F. Vacas, F. Estivariz, D.P. Cardinali, Increase in adrenocortictropin release during wallerian degeneration of peripheral sympathetic neurons after superior cervical ganglionectomy of rats, Neuroendocrinal. 51:213 (1990).CrossRefGoogle Scholar
  3. 3.
    R. Boyer, L. Tapia-Arancibia, G. Alonso, S. Arancibia, Decrease of hypothalamic TRH levels but not plasmic TSH levels after ablation of submandibular salivary glands in the rat, J. Biol. Buccale 16:69 (1988).PubMedGoogle Scholar
  4. 4.
    A. Miyake, K. Tasaka, S. Otsuka, H. Kohmura, H. Wakimoto, T. Aonot, Epidermal growth factorstimulates secretion of rat pituitary lutenizing hormone in vitro, Acta Endocrinol. 108:175 (1985).PubMedGoogle Scholar
  5. 5.
    R. Boyer, F. Jame, S. Arancicia, Une fonction non exocrine de la glande sous-maxillaire, Annales d’Endocrinologie (Paris) 52:307 (1991).Google Scholar
  6. 6.
    R. Relkin, Effect of pinealectomy and constant light and darkness on thyrotropin level in pituitary and plasma of the rat, Neuroendocrinol 10:46 (1972).CrossRefGoogle Scholar
  7. 7.
    J. Vriend, P.M. Hinkle, K.M. Knigge, Evidence for TRH inhibitor in the pineal gland. Endocrinology 107:1791 (1980).PubMedCrossRefGoogle Scholar
  8. 8.
    R. Levi-Montalcini, The nerve growth factor 35 years later, Science 286:1154 (1987).CrossRefGoogle Scholar
  9. 9.
    M.G. Spillantini, L. Aloe, E. Alleva, R. De Simone, M. Guedert, R. Levi-Montalcini, Nerve growth factor mRNA and protein increase in hypothalamus in a mouse model of aggression, Proc. Natl. Acad. Sci. USA 86:8555 (1989).PubMedCrossRefGoogle Scholar
  10. 10.
    U. Wingren, T.H. Brown, B.M. Watkins, G.M. Larson, Delayed gastric ulcer healing after extirpation of submandibular glands is sex-dependent, Scand. I. Gastroenterol. 24:1102 (1989).CrossRefGoogle Scholar
  11. 11.
    B.L. Tepperman, B.D. Soper, Effect of sialadenectomy on ethanol-induced gastric mucosal damage in the rat: role of neutrophils, Can. J. Physiol. Pharmacol. 68:207 (1990).PubMedCrossRefGoogle Scholar
  12. 12.
    M. Laato, J. Heino, V.-L. Kahari, J. Nhinikoski, B. Gerdin, Epidermal growth factor (EGF) prevents methylprednisolone-induced inhibition of wound healing, J. Surg. Res. 47:354 (1989).PubMedCrossRefGoogle Scholar
  13. 13.
    Y. Kamei, O. Tsutsumi, Y. Kuwabara, Y. Taketani, Intrauterine growth retardation and fetal losses are caused by epidermal growth factor deficiency in mice. Am. J. Physiol. 264:R597 (1993).Google Scholar
  14. 14.
    Noguchi, S., Ohba, Y., and Oka, T., Effect of salivary epidermal growth factor on wound healing of tongue in mice. Am. J. Physiol. 260:E620 (1991).Google Scholar
  15. 15.
    Aloe, L., Alleva, E., Bohm, A., and Levi-Montalcini, R., Aggressive behaviour induces release of nerve growth factor from mouse salivary gland into the blood stream. Proc. Natl. Acad. Sci. USA 83:6184 (1986).PubMedCrossRefGoogle Scholar
  16. 16.
    Poulsen, K., and Pedersen, E.B., Increase in plasma renin in aggressive mice originates from kidneys, submaxillary and other salivary glands, and bites. Hypertension 5:180 (1983).PubMedCrossRefGoogle Scholar
  17. 17.
    Pedersen, E.B., and Poulsen, K., Aggression-provoked huge release of submaxillary mouse renin to saliva. Acta Endocrinol. 104:510 (1983).PubMedGoogle Scholar
  18. 18.
    Hwang, D.L., Wang, S., Chen, R. C-R., and Lev-Ran, A., Trauma, especially of the submandibular glands, causes release of epidermal growth factor into bloodstream of mice. Reg. Peptides 34:133 (1991).CrossRefGoogle Scholar
  19. 19.
    Shimizu, M., Sato, J., Ishi, T., Kanada, T. and Shinoda, M., Androgen-induced production of colony-stimulating factor (CSF) and colony-inhibitory factor (CIF) in the submandibular gland in female mice. J. Pharmacobio-Dyn. 12: 352 (1989).PubMedCrossRefGoogle Scholar
  20. 20.
    Kemp, A., Mellow, L. and Sabbadini, E., Inhibition of interleukin 1 activity by a factor in submandibular glands of rats. J. Immunol. 237:2245 (1986).Google Scholar
  21. 21.
    Amand, O., Tsuji, T., Nakamura, T., and Iseki, S., Expression of transforming growth factor β1 in the submandibular gland of the rat. J. Histochem. Cytochem. 39:1707 (1991).CrossRefGoogle Scholar
  22. 22.
    Miller, D.A., Lee, A., Pelton, R.W., Chen, E.Y., Moses, H.L., and Derynck, E.Y., Murine transforming growth factor β2 cDNA sequence and expression in adult tissues and embryos. Mol. Endocrinol. 3:1108 (1989).PubMedCrossRefGoogle Scholar
  23. 23.
    Salido, E.C., Yen, P.H., Shapiro, L.J., Fisher, D.A. and Barajas, L., In situ hybridization of nerve growth factor mRNA in the mouse submandibular gland. Lab. Invest. 59:625 (1989).Google Scholar
  24. 24.
    Banks, B.E.C., Vernon, C.A., & Warner, J.A., Nerve growth factor has anti-inflammatory activity in the rat hind-paw oedema test. Neurosci. Lett. 47:41 (1984).PubMedCrossRefGoogle Scholar
  25. 25.
    Sugiyama, K., Suzuki, Y., and Furuta, H., Histamine-release induced by 7S nerve-growth factor of mouse submandibular salivary glands. Arch. Oral Biol. 30:93 (1985).PubMedCrossRefGoogle Scholar
  26. 26.
    Fu, Y-K., Arkins, S., Wang, B.S., and Kelley, K.W., A novel role of growth factor and insulin-like growth factor-1. Priming neutrophils for superoxide anion secretion. J. Immunol. 146:1602 (1991).PubMedGoogle Scholar
  27. 27.
    Kannan, Y., Ushio, H., Koyama, H., Okada, M., Oikawa, M., Yoshihara, T., Kaneko, M. and Matsuda, H., 2.5S nerve growth factor enhances survival, phagocytosis, and superoxide production by murine neutrophils. Blood 77:1320 (1991).PubMedGoogle Scholar
  28. 28.
    Gruber, D.F., O’Halloran, K.P., D. Alesandro, S., and Farese, A.M., Hypermetabolic priming of canine neutrophils by 7-S nerve growth factor. Am. J. Vet. Res. 51:921 (1990).PubMedGoogle Scholar
  29. 29.
    Zimmerli, W., Huber, I., Bouma, B.N., and Lammle, B., Purified human plasma kallikrein does not stimulate but primes neutrophils for superoxide production. Thromb. Haemost. 29:1221 (1989).Google Scholar
  30. 30.
    Boyle, M.D., Lawman, M.J.P., Gee, A.P., and Young, M., Nerve growth factor: a chemotactic factor for polymorphonuclear leukocytes in vivo. J. Immunol. 134:564 (1985).PubMedGoogle Scholar
  31. 31.
    Saito, K., Kato, C., and Teshigawara H., Saliva inhibits chemiluminescence response, phagocytosis and killing of Staphylococcus epidermidis by polymorphonuclear leukocytes. Infect. Immunity 56:2125 (1988).Google Scholar
  32. 32.
    Ramaswamy, K., Mathison, R., Carter, L., Kirk, D., Green, F., Davison, J.S., and Befus, D., Marked antiinflammatory effects of decentralization of the superior cervical ganglia. J. Exp. Med. 172:1819 (1990).PubMedCrossRefGoogle Scholar
  33. 33.
    Mathison, R.D., Hogan, A., Helmer, D., Bauce, L., Woolner, J., Davison, J.S., Schultz, G., and Befus, D., Role for the submandibular gland in modulating pulmonary inflammation following induction of systemic anaphylaxis. Brain Behav. Immun. 6:117 (1992).PubMedCrossRefGoogle Scholar
  34. 34.
    Carter, L., Ferrari, J.K., Davison, J.S., and Befus, D., Inhibition of neutrophil Chemotaxis and activation following decentralization of the superior cervical ganglia. J. Leukoc. Biol. 51:597 (1992).PubMedGoogle Scholar
  35. 35.
    Mathison, R.D., Davison, J.S., De Sanctis, G., Green, F., and Befus, A.D., Decentralization of the superior cervical ganglia and the immediate hypersensitivity response. Proc. Soc. Exp. Biol. Med. 200:542 (1992).PubMedGoogle Scholar
  36. 36.
    Mathison, R.D., Carter, L., Mowat, C., Bissonnette, E., Davison, J.S., and Befus, D., Temporal analysis of the anti-inflammatory effect of decentralization of the rat superior cervical ganglia. Am. J. Physiol. (in press) (1993).Google Scholar
  37. 37.
    Bissonnette, E.Y., Mathison, R.D., Carter, L., Davison, J.S., and Befus, A.D., Decentralization of the superior cervical ganglia inhibits mast cell mediated TNFa-dependent cytotoxicity. 1. Potential role of salivary glands. Brain Behav. Immun. (in press) (1993).Google Scholar
  38. 38.
    Mathison, R.D., Befus, D., and Davison, J.S., Removal of the submandibular glands increases the acute hypotensive response to endotoxin. Circ. Shock 39:52 (1993).PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Ronald Mathison
    • 1
  • Joseph S. Davison
    • 1
  • A. Dean Befus
    • 2
  1. 1.Department of Medical PhysiologyThe University of CalgaryCalgaryCanada
  2. 2.Pulmonary Research GroupThe University of AlbertaEdmontonCanada

Personalised recommendations