Prediction of Failure of Polypropylene Films

  • Barbara E. Linder
  • Robert J. Samuels
Conference paper

Abstract

The search for process-property relationships has occupied a central role in the development of polymer engineering. Of particular interest is the understanding, control, and prediction of such properties as modulus, yield, and failure, and the influence variables such as time, temperature, and environment have on material performance. These parameters control all deformation properties and thus determine the process, testing, and end-use applications of a material.

Keywords

Orientation Function Failure Stress Semicrystalline Polymer Isotactic Polypropylene Polypropylene Film 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. J. Samuels, Structured Polymer Properties, Wiley-Interscience, New York (1974).Google Scholar
  2. 2.
    J. L. Kardos, J. Raisoni, S. Picarolo, and J. C. Halpin, Polymer Engineering and Science 19, 1000 (1979).CrossRefGoogle Scholar
  3. 3.
    A. R. Wedgewood and J. C. Seferis, Polymer Engineering and Science 24, 328 (1984).Google Scholar
  4. 4.
    R. S. Stein and G. L. Wilkes, Structure and Properties of Oriented Polymers, I. M. Ward, Ed., John Wiley and Sons, New York, Chap. 3 (1975).Google Scholar
  5. 5.
    I. M. Ward, Mechanical Properties of Solid Polymers, Wiley-Interscience, New York (1974).Google Scholar
  6. 6.
    C. R. Desper, Characterization of Materials in Research, Ceramics and Polymers, Syracuse University Press, New York, Chap. 16 (1975).Google Scholar
  7. 7.
    R. L. McCullough, C. T. Wu, J. C. Seferis, and P. H. Lindenmeyer, Polymer Engineering and Science 16, 371 (1976).CrossRefGoogle Scholar
  8. 8.
    R. Hill, The Mathematical Theory of Plasticity, Clarendon Press, Oxford (1950).Google Scholar
  9. 9.
    S. W. Tsai, Strength Theories of Filamentary Structures, in: Fundamental Aspects of Fiber Reinforced Plastic Composites, R. T. Schwartz and H. S. Schwartz, Eds., Wiley, New York (1968).Google Scholar
  10. 10.
    L. R. Jones, Mechanics of Composite Materials, McGraw Hill, New York (1975).Google Scholar
  11. 11.
    B. E. Linder and R. J. Samuels, Polymer Engineering and Science 25, 821 (1985).Google Scholar
  12. J. C. Seferis, R. L. McCullough, and R. J. Samuels, J. Macromol. Sci.Phys. B13(3), 357 (1977).Google Scholar
  13. 13.
    J. C. Seferis and R. J. Samuels, Polymer Engineering and Science 19, 975 (1979).CrossRefGoogle Scholar
  14. 14.
    R. J. Samuels, SPE ANTEC 26, 309 (1980).Google Scholar
  15. 15.
    R. J. Samuels, Polymer Engineering and Science 19, 66 (1979).CrossRefGoogle Scholar
  16. 16.
    J. E. Huber and R. J. Samuels, in: Interrelations Between Processing, Structure, and Properties of Polymeric Materials, J. C. Seferis and P. S. Theocaris, Eds., Elsevier Scientific Publishing Co., New York, p. 193 (1984).Google Scholar
  17. R. J. Samuels, Die Makromol. Chem. Suppl. 4, 241 (1981).Google Scholar
  18. 18.
    R. J. Samuels, Polymer Engineering and Science 23, 257 (1983).CrossRefGoogle Scholar
  19. 19.
    L. W. Collier and R. J. Samuels, SPE ANTEC 29, 390 (1983).Google Scholar
  20. 20.
    F. M. Mirabella, J. Polymer Sci., Polymer Physics Ed. 22, 1293 (1984).Google Scholar
  21. 21.
    P. H. Hermans, “Physics and Chemistry of Cellulose Fibers with Particular Reference to Rayon,” Elsevier, New York (1949).Google Scholar
  22. R. J. Samuels, J. Macromol. Sci.-Phys., B8(1) 41 (1973).Google Scholar
  23. 23.
    A. R. Wedgewood and J. C. Seferis, Polymer 22, 966 (1981).Google Scholar
  24. 24.
    B. E. Linder, M. S. Thesis, Georgia Institute of Technology (1984).Google Scholar
  25. 25.
    International Math Science Library Incorporated,“ Edition 9, June 1, 1982, (IMSL Ed. 9) Houston, IMSL.Google Scholar
  26. R. J. Samuels, J. Macromol. Sci.-Phys. B4, 701 (1970).Google Scholar
  27. 27.
    H. L. Pazer and L. A. Swanson, “Modern Methods for Statistical Analysis,” Intext, San Francisco (1972).Google Scholar
  28. 28.
    R. V. Dilts, “Analytical Chemistry,” D. Van Nostrand, New York (1974).Google Scholar

Copyright information

© Springer Science+Business Media New York 1987

Authors and Affiliations

  • Barbara E. Linder
    • 1
  • Robert J. Samuels
    • 1
  1. 1.School of Chemical EngineeringGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations