Signals of DCC Physics

  • Jørgen Randrup

Abstract

This series of winter workshops is devoted to nuclear dynamics, a term referring to a broad range of physics topics that can be explored by bringing the nuclear system far away from its ordinary tranquil state, usually by means of nuclear collisions. As ever more powerful accelerators and increasingly refined detector systems are becoming available, the scope of these studies has steadily expanded. Not only has the accessible domain of the nuclear chart grown explosively, but prospects have appeared for probing fundamental features of strongly interacting systems. A long-standing goal has been to probe the non-perturbative properties of QCD and the expected transition to a deconfined quark-gluon plasma phase. Of somewhat more recent date is the recognition that high-energy nucleus-nucleus collisions may also provide key insights into chiral symmetry. In particular, the collision may produce extended regions of space within which chiral symmetry is temporarily nearly restored and the subsequent non-equilibrium relaxation towards the normal vacuum may then produce large-amplitude coherent oscillations of the pion field. This hypothetical phenomenon, which has been dubbed disoriented chiral condensates, may lead to an enhanced emission of isospin-polarized soft pions.1–6 We shall briefly review the key DCC features and discuss various possible signals for its actual occurrence. For a recent DCC review, see ref. 7.

Keywords

Chiral Symmetry Field Fluctuation Linear Sigma Model Dilepton Production Pion Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A.A. Anselm, Phys. Lett. B217 (1989) 169.ADSGoogle Scholar
  2. 2.
    A.A. Anselm and M.G. Ryskin, Phys. Lett. B266 (1991) 482.ADSGoogle Scholar
  3. 3.
    J.D. Bjorken, K.L. Kowalski, and C.C. Taylor, SLAC-PUB-6109 (1993).Google Scholar
  4. 4.
    J.D. Bjorken, K.L. Kowalski, and C.C. Taylor, hep-ph/9309235.Google Scholar
  5. 5.
    K. Rajagopal and F. Wilczek, Nucl. Phys. B399 (1993) 395.ADSCrossRefGoogle Scholar
  6. 6.
    J.P. Blaizot and A. Krzywicki, Phys. Rev. D46 (1992) 246.ADSGoogle Scholar
  7. 7.
    J.P. Blaizot and A. Krzywicki, Acta Phys. Polon. 27 (1996) 1687.Google Scholar
  8. 8.
    K. Rajagopal and F. Wilczek, Nucl. Phys. B404 (1993) 577.ADSCrossRefGoogle Scholar
  9. 9.
    S. Gavin, A. Gocksch, and R.D. Pisarski, Phys. Rev. Lett. 72 (1994) 2143.ADSCrossRefGoogle Scholar
  10. 10.
    S. Gavin and B. Müller, Phys. Lett. B329 (1994) 486.ADSGoogle Scholar
  11. 11.
    M. Asakawa, Z. Huang, and X.N. Wang, Phys. Rev. Lett. 74 (1995) 3126.ADSCrossRefGoogle Scholar
  12. 12.
    D. Boyanovsky, H.J. de Vega, and R. Holman, Phys. Rev. D 51, 734 (1995).ADSCrossRefGoogle Scholar
  13. 13.
    F. Cooper, Y. Kluger, and E. Mottola, and J.P. Paz, Phys. Rev. D51, 2377 (1995).ADSGoogle Scholar
  14. 14.
    Y. Kluger, F. Cooper, E. Mottola, Phys. Rev. C54, 3298 (1996).ADSGoogle Scholar
  15. 15.
    J. Randrup, Phys. Rev. Lett. 77, 1226 (1996).ADSCrossRefGoogle Scholar
  16. 16.
    J.P. Blaizot and A. Krzywicki, Phys. Rev. D50 (1994) 442.ADSGoogle Scholar
  17. 17.
    Z. Huang and X.N. Wang, Phys. Rev. D49 (1994) 4335.ADSGoogle Scholar
  18. 18.
    F. Cooper, Y. Kluger, E. Mottola, and J.P. Paz, Phys. Rev. D51 (1995) 2377.ADSGoogle Scholar
  19. 19.
    J. Randrup, Nucl. Phys. A616 (1997) 531.ADSGoogle Scholar
  20. 20.
    G. Baym and G. Grinstein, Phys. Rev. D15 (1977) 2897.ADSGoogle Scholar
  21. 21.
    J. Randrup, Phys. Rev. D55 (1997) 1188.ADSGoogle Scholar
  22. 22.
    L.P. Csernai and I.N. Mishustin, Phys. Rev. Lett. 74 (1995) 5005.ADSCrossRefGoogle Scholar
  23. 23.
    S. Mrowczynski and B. Müller, Phys. Lett. B363 (1995) 1.ADSGoogle Scholar
  24. 24.
    S. Gavin, Nucl. Phys. A590 (1995) 163c.ADSGoogle Scholar
  25. 25.
    Z. Huang, I. Sarcevic, R. Thews, and X.N. Wang, Phys. Rev. D54 (1996) 750.ADSGoogle Scholar
  26. 26.
    K. Rajagopal, Hirschegg Winter Workshop XXV (1997); hep-ph/9703258.Google Scholar
  27. 27.
    J. Randrup and R.L. Thews, Phys. Rev. D56 (1997) 4392.ADSGoogle Scholar
  28. 28.
    D. Boyanovsky, H.J. de Vega, R. Holman, and S. Prem Kumar, PRD56 (1997) 5233.Google Scholar
  29. 29.
    Z. Huang and X.N. Wang, Phys. Lett. B383 (1996) 457.ADSGoogle Scholar
  30. 30.
    Y. Kluger, V. Koch, J. Randrup, and X.N. Wang, Phys. Rev. C57 (1998) 280.ADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Jørgen Randrup
    • 1
  1. 1.Nuclear Science Division, Lawrence Berkeley National LaboratoryUniversity of CaliforniaBerkeleyUSA

Personalised recommendations